PROGRAMA NACIONAL DE IRRIGAÇÃO GOVERNO DO ESTADO DO CEARÁ SECRETARIA DOS RECURSOS HÍDRICOS - SRH

ESTUDO DE VIABILIDADE TÉCNICO-ECONÔMICA DO APROVEITAMENTO HIDROAGRÍCOLA DO VALE RIO CARÁS

TOMO II PEDOLOGIA

AGUASOLOS
CONSULTORIA DE ENGENHARIA LTDA

FORTALEZA- CE 1983

PROGRAMA NACIONAL DE IRRIGAÇÃO GOVERNO DO ESTADO DO CEARÁ SECRETARIA DE RECURSOS HÍDRICOS

ESTUDO DE VIABILIDADE TÉCNICA-ECONÔMICO

DO APROVEITAMENTO F

Lote: 01133 -	<u>Prep () Scan () Index ()</u>
Projeto Nº 📫 🖠	
Volume	
Qtd A4	Qtd. A3
Qid A?	Qtd A1
Old Att	Outros

PEDOLOGIA

TOMO-II

ESTUDO DE VIABILIDADE TÉCNICO-ECONÔMICA DO APROVEITAMENTO HIDROAGRÍCOLA DO VALE DO RIO CARÁS.

TOMO - II

PEDOLOGIA

\underline{s} \underline{u} \underline{M} \underline{A} \underline{R} \underline{I} \underline{o}

		ITEM	PAG.
1	-	INTRODUÇÃO	01
2	-	SITUAÇÃO E EXTENSÃO	02
3	-	FATORES DE FORMAÇÃO DOS SOLOS	03
		3.1 - Relevo	03
		3.2 - Geologia	04
		3.3 - Vegetação	06
		3.4 - Clima	07
4	-	MÉTODOS DE TRABALHOS	13
		4.1 - Método de Trabalho de Campo	13
		4.2 - Método de Trabalho de Escritório	14
		4.3 - Método de Trabalho de Laboratório	15
5	~	SOLOS	18
		5.1 - Quadro de Distribuição das Unidades de Solo	21
		5.2 - Legenda Explicativa	22
		5.3 - Legenda de Classificação	24
		5.4 - Descrição das Unidades	27
		5.5 - Descrição dos Perfis	87
		5.6 - Dados Analíticos	134
		5.7 - Cálculo da Capacidade de Água Disponível	157
6	-	FERTILIDADE	162
		6.1 - Dados Analíticos	165
		6.2 - Capacidade de Uso da Terra	177
		6.3 - Recomendações de Adubações	182
7		CLASSES DE TERRA PARA IRRIGAÇÃO	200
		7.1 - Quadro de Distribuição das Classes de Terra	
		para Irrigação	203
8	-	RESUMO GERAL	205
9	-	CONCLUSÕES E RECOMENDAÇÕES	211
1 :	Λ.	- RIRIIOCDARIA	212

1 - INTRODUÇÃO

Com a finalidade de prosseguir com os projetos de irrigação, visando contemplar o Plano de Assistência ao Pequeno Produtor, um dos segmentos do Projeto Nordeste, a CEPA contratou a empresa AGUASOLOS para estudar detalhadamente os solos do Vale dos Carãs.

Anteriormente, estes solos ja tinham sido levantados a nível de reconhecimento através de um estudo realizado na area, denominado Plano de Valorização Hidro-Agricola do Cariri Ocidental, o qual permitiu selecionar algumas classes de solos para serem estudadas a nível de detalhe.

A metodologia usada para o presente levantamento de solos, obedeceu em parte as normas de Serviço Nacional de Levantamento e Conservação de Solos e na parte relativa a problemas de sais, alcalís e a profundidade em que as mesmas se encontram, procurou-se utilizar uma classificação que vem sendo adotada pelo Serviço de Pedologia do DNOCS, a qual é uma adaptação da Bureau of Reclamation.

2 - SITUAÇÃO E EXTENSÃO

A área do estudo está localizada na micro-região 78 Cariri - Região Administrativa 5. Situa-se geograficamente entre as coordenadas limites 07009'19" e 07012'06" de latitude Sul e 39013'26" e 39015'56" de longitude a 0este de Greenwich.

Verifica-se que a maior extensão da área dá-se no sentido NO - SE e mede aproximadamente 6,0 km, enquanto que a maior largura ocorre com aproximadamente 4,8 km.

A cidade de Juazeiro localiza-se a 9,0 km do centro geográfico da área levantada. Esta área fica próxima dos centros consumidores, não só, de Juazeiro como também, dos municípios de Crato, Barbalha, Missão Velha e Caririaçu.

3 - FATORES DE FORMAÇÃO DOS SOLOS

3.1 - Relevo

Na área objeto do estudo pedológico detalhado identifica-se, de forma geral, dois tipos básicos de relevo, ou sejam, o relevo plano das áreas aluviais e o relevo suave ondulado. Este último deve ser dividido em duas subunidades em função de sua forma e declividade. Assim poderíamos para facilitar o raciocínio chamá-los de suave pouco ondulado e suave ondulado propriamente dito.

Relevo plano - Este relevo corresponde, em expressão geográfica, a superfície ocupada pelos terraços aluvionais e depressões existentes no interior dos mesmos, para ambas as margens do río Carás.

Comumente a forma do relevo se caracteriza por se apresentar como uma área plana e ligeiramente elevada em relação ao nível do fundo do rio. O vale é bem aberto em forma de U, sendo o leito do rio de pouca profundidade em relação à superfície dos solos aluviais. Nestas mesas aluviais ocorrem algumas pequenas depressões relativas, algumas funcionando como la goas temporárias restritas em época invernosa, e, pequenos meandros.

A declividade, em raras ocasiões, pode superar a 1,5%, na maioria da área, ela se situa inferior a este percentual.

Relevo suave pouco ondulado - corresponde a área ocupa da pelas areias quartzosas distróficas. Nesta forma de relevo, os vertentes dos vales são bastantes extensos e a declividade muito uniforme e sempre inferiores a 5%. A rede de drenagem é muito modesta, superficial e pouco ramificada.

A forma de relevo é muito parecida com o relevo de fai xa litorânea, variando desta por apresentar vertentes mais lon gas e menos declivosos e, o topo das elevações aplanado é pou co extenso.

Relevo suave ondulado - se apresenta em forma de colinas rebaixados com declividades pequenas (pouco superiores a
6%) mais ou menos extensas e vales abertos de fundo achatado .
Na area desta forma de relevo, encontramos algumas podzólicos e
todos os vertisolos.

De todos os relevos comentados este é o único tipo que inspira cuidados com relação a problemas de erosão futura.

Assim, desde ja, sugere-se evitar o uso de mecanização agrícola, bem como, se proceder o plantio das culturas obede ~ cendo o sistema de curvas de níveis.

O relevo suave ondulado em suas duas subdivisões comentadas fazem parte do que no conjunto tem sido caracterizado como Depressão Sertanejas. Esta se constitui de compartimentos embutidos entre os maciços e serras sertanejas ou entre estas e os planaltos e chapadas sedimentares.

Embora tendente a plana na região, a topografia nem sempre assim se comporta. Na medida em que a rede de drenagem se adensa e se ramifica o sulcamento linear tende a acidentar o relevo. Os declives se tornaram mais acentuados e a erosão se torna mais ameaçadora. Este fato se constata na depressão periférica meridional a partir do sopé da Chapada do Araripe.

A area do estudo se constitui de relevo suave ondulado pouco recortado e pouco declivoso onde no seu interior se encaixam os solos de relevo plano (aluviões).

3.2 - Geologia

A area objeto deste estudo faz parte da região conhecida por Cariri Ocidental que constitui o bordo sententrional da Bacia Sedimentar do Araripe.

Das diversas formações geologicas existentes na região constatou-se na área deste estudo as seguintes:

1 - Holoceno - Aluviões

- 2 Terciário Colúvios
- 3 Cretaceo Formação Santana
- 4 Jurássico Superior Formação Missão Velha

HOLOCENO - está representado por depósitos recentes de sedimentos de granulometria variada. Referi dos depósitos se processam sem ordem preferencial de sedimentação. Ocupam as ribeirinhas por ambas as margens dos chos e algumas vezes, ao fundo de lagoas ou baixadas existentes na area. Estes sedimentos no conjunto do arranjamento de suas camadas formam os solos aluviais. Estas camadas estratificadas de sedimentos de natureza fluvial, quase sempre não consolidados e de características morfológicas e de composição físico - químico variáveis, apresen tam alguns metros de espessura e compõem um dos solos mais intensamente cultivados n a área.

TERCIÁRIO - é representado por formação de natureza co luvial e que se compõem de sedimentos areno -argilosos, podendo chegar a argila arenosa. São normalmente de coloração ocre ou variedade de tons amarelo avermelhados.

> Esta formação na área ocupa um relevo do tí po suave ondulado e apresentam como solos originários da mesma, alguns podzólicos.

CRETACEO - Formação Santana

Esta formação se caracteriza por apresentar uma sequência de sedimentos finos, argilas, margas e leitos de gipsita.

Na area do estudo ela se mostra num relevo suave ondulado e originando solos bastante argilosos que foram classificados como ver-

tisolos. A rocha matriz destes solos é de natureza calcária.

JURÁSSICO SUPERIOR - Formação Missão Velha

Nesta formação encontram-se na sua composição arenitos de finos e grosseiros, siltitos e argilitos. A coloração vai desde o cinza claro ao vermelho, passando por cromos amare lados e alaranjados.

Neste tipo de formação pode-se encontrar solos classificados como podzólicos e/ou areias quartzosas.

3.3 - Vegetação

A vegetação da área do estudo foi praticamente toda ela substancialmente alterada pela ação do homem. O que antes deveria ter sido uma mata sub-caducifólia ou mesmo uma caatinga hipoxerófila está restrito hoje a uma vegetação rasteira herbácea graminóide.

Se constata principalmente nas áreas de solos não aluvionais remanescentes das formações citadas acima. Supõe-se que antigamente a região tenha sido coberta por uma vegetação florestal, especialmente na sua parte mais sul, e que cedeu, com a ação do homem e com o tempo, lugar a uma vegetação tipo caatinga hipoxerófila, que predomina na região como um todo, executando-se nas serras e na Chapada do Araripe.

Na area restrita ao estudo, pode-se visualizar, de ma - neira isolada e dispersa, espécimes vegetais característicos da formação florestal que se salvaram da ação predatória e conse - guiram subsistir até os dias de hoje, graças as condições favo ráveis de solo e clima.

Os remanescentes da caatinga hipoxerófila estão, na área do estudo, agrupados em pequenas manchas, normalmente distribuidos nos solos menos favoráveis à exploração agrícola. Sua expressão geográfica é mais significativa.

A agricultura seguida da pecuária se encarrega de ocupar praticamente todo o espaço físico de área do projeto. É nesta área que se desenvolve o stratu herbáceo-arbustivo que pode inclusive ter existência sazonal ligado que é o seu desenvolvimento com a ocorrência do período chuvoso. As vezes sua duração pode ser efêmera neste período devido a disputa que este stratus trava com as culturas que são plantadas em áreas comuns.

3.4 - Clima

Embora de fácil aplicação, a classificação de Köppen não corresponde a nossa realidade climática, isto em virtude de não se coadunar bem como as paisagens fitogeográficas do Nor-deste Brasileiro.

A adoção da classificação de Gaussen permite um melhor relacionamento com as paisagens fitogeográficas, mesmo que se disponha somente de dados de pluviometria e temperatura e, não se possa fazer uso de informações sobre nevoeiros, orvalhos, etc, empregados na classificação. Referidos dados são importantes para a determinação dos índices xerotérmicos. Na impossibilidade de se dispor destes dados, esta classificação será utilizada considerando-se apenas as informações das médias mensais de temperatura e de precipitaçês pluviométricas.

Classificação de Köppen

De acordo com a classificação de Köppen, a área se encontra no tipo climático Aw', ou seja, clima tropical chuvoso, quente úmido. A estação chuvosa ocorre no verão-outono, com seca de inverno.

As precipitações médias anuais são superiores a 1.000 mm. As maiores precipitações ocorrem geralmente nos meses de janeiro - fevereiro - março e abril. A estação seca se inicia em junho e se prolonga até novembro.

As temperaturas mais elevadas ocorrem sempre nos meses de outubro a dezembro. Os meses de menores temperaturas são os de junho e julho com 23,79C de média mensal. A amplitude das temperaturas médias mensais é de apenas 3,89C.

Classificação de Gaussen

A aplicação da classificação de Gaussen foi feita com base nos trabalhos de M.V. Galvão. Esta classificação tem como fundamento o rítmo das temperaturas e das precipitações plu - viométricas anuais, através das médias mensais compensadas, con siderando-se os períodos quentes e frios, secos e úmidos, dando maior ênfase ao período seco que é o fator essencial do bio clima. A determinação do período seco é feita através do gráfico ombrotérmico, sendo o índice xerotérmico o responsável para definir a intensidade da seca, ou seja, os dias biologicamente secos. O período seco ou estação seca é definido como uma sucessão de meses secos. O mesmo pode ser considerado seco, quando o total das precipitações pluviométricas em milimetros é igual ou inferior a duas vezes a temperatura em graus centígra dos.

Empregando-se o método de Gaussen e M. V. Galvão, a área do estudo de solos, está enquadrada dentro do bioclima 4bTh (Termoxeroquimênico médio) Tropical quente de seca média, com estação seca de 5 a 6 meses e índice xerotérmico entre 100 e 150. Para esta determinação foram usados as médias compensadas de temperatura e as médias de precipitações pluviométricas dos meses de janeiro a dezembro. Os dados de pluviometria foram extraidos do trabalho "Dados de Pluviometria Mensal". SUDENE -MINTER; Vol I. Os dados de temperatura são da SUDENE - MINTER (não publicados).

No tocante a parte pluviométrica podemos acrescentar os seguintes detalhes:

O mês de março é o mais chuvoso do ano com média de 256,4 mm enquanto que, o mês de setembro é o que chove menos com 5,1 mm de média por ano.

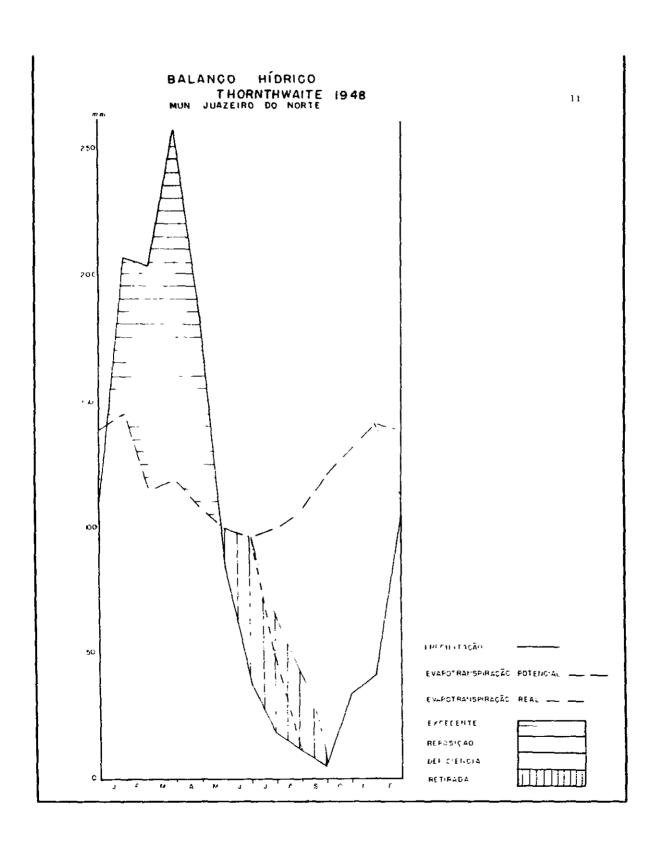
A pluviosidade média anual é de 1.184,7mm.

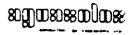
No que se refere a parte de temperatura podemos destacar os seguintes dados:

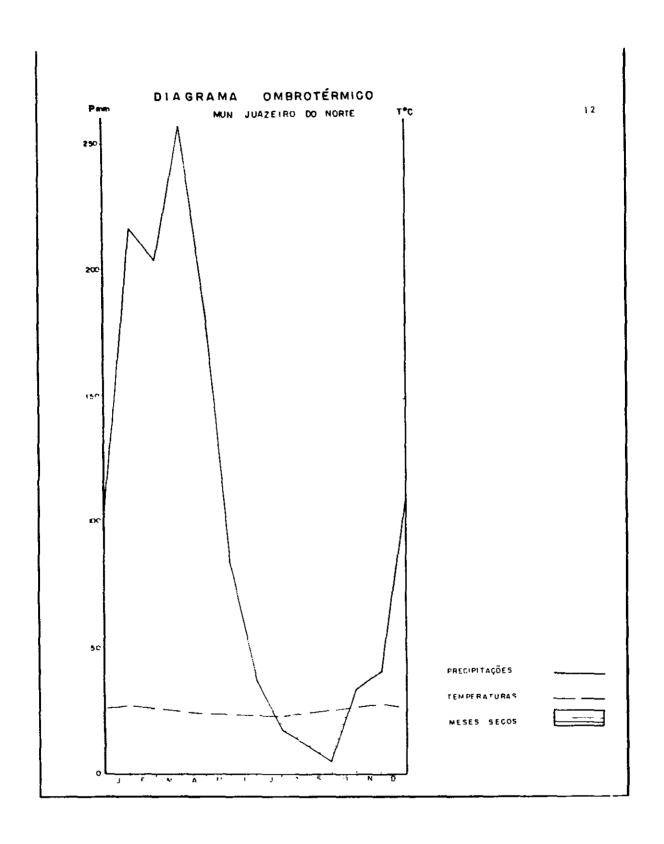
Os meses mais quentes do ano vão de outubro a janeiro sendo os meses de novembro a janeiro os de maiores temperatu - ras médias registradas com 27,2°C.

Os meses menos quentes do ano vão de maio a julho, sendo os meses de junho e julho os menos quentes com média de 23.49C.

Obs: A temperatura média anual é de 25ºC.


O balanço hídrico segundo Thorthwaite 1948 revela: para uma evapotranspiração potencial 1.417 mm e uma pluviosidade de 1.185 mm de média (com a evapotranspiração real de 922 mm) um excesso de 263 mm distribuídos nos meses de fevereiro e um déficit de 495 mm distribuídos nos meses restantes do ano.


BALANÇO HÍDRICO MENSAL


THORNTHWATTE 1948

MUN: JUAZEIRO DO NORTE - CE

Mogos	Temperatura	FP não corri-	Correção	Evanotr.	Precia.	r-Fr	Λι	rmarenarento		0.5.5	_
· · · · · · ·	média	aido		potencial	77		Mensal	λlteracão	real	Defic.	(
waren er ye a angelekken	(2)	(nomograma) (3)	(4)	LP (5)	(6)	, (7)	(8)	(9)	(12)	(11)	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	ρC			mm	mm	חתות	ריית	יועויי	19Fi	r ·	-
Janeiro	77,2	4,6	31,5	145	206	+ 61	61	+61	145	n	h .
Γινιτοίτο	25,6	4.0	28,4	114	203	+ 89	100	+39	114	0	1 50
Marco	25,2	3,8	31,2	119	256	+137	100	0	119	0	1 3 '7
Auril	19,6	}	30,1	108	184	+ 76	100	0	1.08	n	7 5
Mato	3,7	٦,2	30,9	99	84	- 15	85	-15	99	0	0
Junho	23,4	3,2	30,0	96	38	- 58	27	-58	96	0	n
Jul 10	23,4	1,2	31,0	99	18	- 81) n	-27	145	54	1 0
Finato	24,1	3,4	31,1	106	11	- 95	ő		lii	9.5	ń
Terror ro	25,6	4,0	30,1	120	5			0	τ,	115	
Catabro	26,9	4,?	31,3	131	34	115 - 97	0	0	34	97	$\frac{1}{1}$
tos niro	27,2	4,6	30,6	141	11.1	-100	, o		41	100	i n
Dezembro	26,5	4,11	31,5	139	105	34	0	0	105	34	n
A 4 0	_			1.417	1.185	-232	_	+ 100	-922	495	263

4 - METODOS DE TRABALHO

4.1 - Método de trabalho de campo

O presente trabalho pedológico foi realizado a nível de detalhe. De início, efetuou-se a etapa de tradagens da área objetivando obter um entendimento do arranjamento, identificação e caracterização das possíveis unidades de solos existen - tes. Para tanto, usou-se uma malha de tradagens de 200 m x 100 m.

As tradagens foram feitas pelo processo de caminhamento, com auxílio de topografia, a qual marcava os pontos a serem sondados. Na fase de tradagens, observou-se aspectos relativos a formação dos solos, os quais ajudaram na separação e mapeamento preliminar das unidades pedológicas.

Após a etapa de tradagens, definiu-se e delimitou- se em primeira aproximação, em planta, as áreas de possíveis unidades de mapeamento e nesta, elegeu-se os locais mais representativos para abertura dos perfís que foram descritos, coletados e analisados. Na descrição dos perfís, adotou-se as normas do Manual de Trabalho de Campo.

Foi descrito e analisado um perfil para cada unidade de solo. Através dos resultados analíticos das amostras de solos foi possível realizar a separação definitiva das unidades pedológicas.

De posse das informações de campo e de laboratório, che gou-se a classificação final das unidades de solos e daí, obte ve-se subsídios suficientes, a fim de que se pudesse sugerir recomendações para um manejo adequado dos solos.

4.2 - Método de Trabalhos de Escritório

Os trabalhos de escritório consistiram na composição das diversas informações obtidas no campo (tais como: resultados de tradagens, descrição de perfis) e informações adicionais associadas à pesquisa bibliográfica (dados sobre os fatores de formação do solo, exame de trabalhos já elaborados na região, aspectos auto-geográficos, etc.). Além disso, procedeuse a interpretação e discussão dos resultados analíticos, a elaboração das plantas (solo e classe de terra para irrigação) a análise dos testes de infiltração e seus gráficos, a descrição e classificação das unidades de solo, o cálculo da capacidade de água disponível dos solos, os relatórios e outros.

As informações bibliográficas foram comparadas aquelas verificadas no campo, quer no que se prende a gênese e as atuais características do solo, quer no que se refere ao atual método de exploração, comparada a capacidade de produção de terra, quer ainda, no que diz respeito a vegetação natural, seu atual aspecto, sua importância biológica, seu significado na identificação dos solos, etc.

A discussão dos resultados analíticos físico-químicos e os dados de morfologia dos solos estudados, foi feita de modo a facilitar a interpretação e o perfeito entendimento dos resultados apresentados.

A observação dos resultados das sondagens é importante para a identificação e delimitação das unidades de solo e sua comparação com manchas de pontos de tradagens de resultados idênticos, permitiram a obtenção de uma perfeita sintonia no casamento desses dados. Dessa forma, a delimitação e o mapea - mento das unidades de solo está precisa ao nível de trabalho requerido.

A elaboração das plantas de solos e classes de terras para irrigação foi obtida a partir deste método preciso de mapeamento. A escala empregada foi de 1:5000 com base em levanta

mento topográfico, para as plantas acima citadas.

A metodologia e a classificação das unidades de solo obedeceram às normas do SNLCS do M.A.

As classes de terras para irrigação tiveram por base, os critérios preconizados pelo Water ande Power Research, antigo U.S.B.R.

As classes de capacidade de uso da terra obedecem a sistemática do Escritório Técnico de Agricultura Brasil-Estados Unidos.

- Manual Brasileiro para Levantamento da Capacidade de Uso da Terra IIIª Aproximação.

4.3 - Método de Trabalho de Laboratório.

Para as determinações físicas e químicas, o Laborato - rio de solos (Raís), adotou a metodologia de Leandro Vettori, que é utilizado pelo Centro de Pesquisas Pedológicas.

Colocou-se as amostras para secar, em seguida foram destorroadas e passadas numa peneira com abertura de 2 mm de diâmetro. Na fração superior a 2 mm fez-se a separação de cas-calhos e calhaus.

A parte inferior a 2 mm, constitui a terra fina seca ao ar que serviu para as determinações físicas e químicas que a seguir relacionaremos.

ANÁLISES FÍSICAS

Composição granulométrica:

A análise granulométrica, foi determinada por sedimentação em cilindro de Koettgen, sendo usado o NaOH e em alguns casos, o calgon como agente dispersante. Utilizou-se ainda um agitador de alta rotação. Foram calculadas 4 frações, de acordo com os límítes do triângulo textural norte americano. Argila Natural - Neste caso, a argila é dispersa em água destilada e determinada por sedimentação em cilindro de Koettgen, sendo necessário a utilização de um cilindro de alta rotação. Umidade a 15 atm - Foi determinado pelo método do extrator de mem-

brana Richards. Água útil - obtida pela diferença da umidade a 1/3 de atm e a umidade a 15 atm.

Densidade Aparente - Determinado pelo processo do anel de Kopec (anel volumétrico de 50 cm³), levando-se a amostra a 105 - 1109C em estufa até apresentar peso constante.

Índice de estrutura - Calculado pela Fórmula:

(Argila Total - Argila dispersa em água) x 100

Argila Total

ANALISES QUÍMICAS

Carbono Orgânico:

Determinado por oxidação de matéria orgânica com bicro mato de potássio 0,4 N, segundo o método de Tiurim.

Nitrogênio Total:

Determinado por digestão com ácido sulfúrico, catalizada, por sulfato de cobre e sulfato de sódio, após a transformação de todo o nitrogênio em sal amoniacal, este foi composto por NaOH e o amoníaco recolhido em solução de ácido a 4% e titulado com KCL 0,01N.

pH em água e KCL normal:

Determinado potenciometricamente numa suspensão sólido - líquido de aproximadamente 1:2,5 e o tempo de contagem nunca inferior a meia hora, agitando-se a suspensão imediatamente antes da leitura.

P. assimilavel:

Extraído com solução 0,05 em HCL e 0,025 em H₂SO4 (North Carolina). O P. é dosado colorimetricamente pela redução de

complexo fos fomolibdico com ácido ascórbico, em presença de sal de bismuto.

Ca++, Mg ++ e Al ++++ Permutaveis:

Extraídos com solução normal de KCL na proporção de 1:10.

Numa aliquota determinou-se o Al⁺⁺⁺ pela titulação da acidez, usando-se azul bromotimol como indicador: Nesta mesma C aliquota dividida em duas frações iguais foram determinadas Ca⁺⁺ e Ca⁺⁺ + Mg⁺⁺ pelo EDTA.

K e Na Permutáveis:

Extraídos com KCL 0,5 N e determinados por fotometria de chama.

Valor S (soma de bases permutaveis) - Obtido pela soma de Ca $^{++}$, Mg $^{++}$, K $^{+}$ e Na $^{+}$.

H++A1+++ Permutáveis:

Extraídos com acetato de Ca⁺⁺ normal e pH 7,0 e titula da a acidez resultante pelo NaOH 0,1N, usando-se fenolftaleina como indicador.

H + Permutavel:

Calculado subtraindo-se o valor H^+ + AI^{+++} , o valor de AI^{+++} .

Valor T (capacidade de troca de cátions) - obtido pela soma de "S" + $H^{+}e$ $A1^{+++}$.

Valor V (saturação de bases) - Obtido pela formula:

$$V = \frac{S \times 100}{T}$$

5 - SOLOS

A area do presente levantamento pedológico é representa da por diversas classes de solos, cada qual com suas características definidas, requerendo pois, manejos de solo e agua diferenciadas, como também apresentam vocações culturais que podem variar de unidade para unidade.

Por ordem de representatividade relativa a área, tecere mos alguns comentários sobre as principais características dos solos estudados, seus problemas e medidas que deverão ser adota das para o uso mais racional.

- Aluviões: Esta classe é constituída por solos pouco desenvolvidos, apresentando diferenciação de horizonte A seguido por camadas estratificadas de natureza e textura variada. Es tes solos, geralmente são encontrados formando terraços fluviais dos cursos de água, sendo provenientes de sedimentação.
- O material de origem destes solos é constituído por sedimentos não consolidados, provenientes de deposição recentes do Holoceno.

Com relação a textura dos solos aluviais, observou- se que o percentual de solos com textura média ou média sobre outras é de 19,01%, com uma área de 317,37 ha. Os de textura média pesada ou média pesada sobre outras, somam 358,88 ha, correspondente portanto a 21,50% do total da área. Os solos de textura pesada totalizam uma área de 359,62 ha, o equivalente a 21,54%.

Através de observações dos dados analíticos, conclui-se que 800,88 ha ou seja 47,98% dos solos aluviais estudados apresentam sérios problemas de concentrações excessivas de sais na massa do solo. Para melhorar as condições físico-químicas destes solos, necessário se faz a aplicação de corretivos químicos e lavagens do solo, sendo que tais práticas devem ser associa das em algumas unidades a implantação de um sistema de drenagem subterrânea. Estas medidas, são muito onerosas e portanto, reque

rem estudos mais detalhados sobre a conveniência ou não da ado ção das mesmas.

Algumas práticas, mais simples, entretanto não muito eficazes podem ser adotadas visando diminuir o processo de salinização e/ou alcalinização dos solos. Dentre estas práticas, sugere-se a incorporação de adubos orgânicos e verdes, mantém o solo com umidade próxima a capacidade de campo, uso de fertilizantes químicos que venham reverter a salinização ou alcalinização.

- Vertisolos: São solos moderadamente ou imperfeitamen te drenados, argilosos, com muita pouca diferenciação de horizontes, desprovidos de horizonte de acumulação de argilas. São solos tipicamente de textura pesada, com predomínio de argila montmorilonífica, a qual condiciona a expansão do material do solo quando molhado e a contração quando seco, determinando for tes fendilhamentos dos solos por ocasião da estação seca. São solos de elevada capacidade de troca de cátions e ocasionalmen te, com acumulação de carbonato de cálcio.

A area dos vertisolos é de 349,75 ha o que corresponde a 20,96% do total dos solos estudados.

- Areias Quartzosas: Esta classe compreende solos areno-quartzosos profundos com baixo teores de argila (menos que
15% de argila). Tem fertilidade natural muito baixa e via de
regra são bem drenados. Apresentam seqüência de horizonte A e
C e verifica-se pouca diferenciação entre esses dois horizon tes devido à pequena variação das características morfológicas,
mas pode ser evidenciada uma pequena diferença de cor. O teor
de matéria orgânica, é a característica mais concreta para diferenciação, no campo, entre os horizontes A e C.

A area abrangida por estes solos representa 10,69% do total da area levantada e soma aproximadamente 178,35 hectares.

- <u>Podzólicos</u>: Na área estudada, estes solos são pouco representativos, haja visto que contribuem somente com 5,28% com relação ao total dos solos estudados.

Os podzólicos são solos com horizonte B textural, com argila de atividade baixa, isto é capacidade de troca de cátions inferior a 24mEq/100g de solo após correção para carbono. Apresentam perfís diferenciados, tendo sequência de horizontes A, Bt e C. Nos podzólicos estudados, verifica-se a ocorrência de plinthita, o que em parte limita a vocação cultural destes solos.

21.

5.1 - Quadro de distribuição das unidades de solo

Umidades	Ārea (ha)	% sobre a área total					
Ae ₁	91,12	5,46					
A e ₂	21,15	1,27					
A e ₃	128,25	7,68					
A e ₄	34,00	2,04					
А е ₅	42,75	2,56					
A e ₆	95,63	5,73					
Ае ₇	38,75	2,32					
A e ₈	46,75	2,80					
A e ₉	36,25	2,17					
A e ₁₀	141,50	8,48					
A e 1 1	15,12	0,91					
A e ₁₂	68,75	4,12					
Ae_{13}	60,00	3,59					
A e ₁₄	77,00	4,61					
A e ₁₅	138,75	8,31					
PE	88,20	5,28					
v ₁	47,50	2,85					
v ₂	302,25	18,11					
\mathtt{AQd}_1	132,85	7,96					
AQd ₂	45,50	2,73					
Revestimento							
Pedregoso	17,12	1,02					
	1.669,19	100,00					

5.2 - Legenda Explicativa

No presente trabalho foram adotados os seguintes crit $\underline{\tilde{e}}$ rios:

- Eutrófico para os solos que apresentam saturação de bases (V) superior a 50%.
- Distrófico para os solos que apresentam saturação de bases (V) inferior a 50%.
- Tipo de horizonte A foi encontrado apenas o tipo horizonte A fraco e moderado.
- Acidez levou-se em consideração a classificação pre conizada pelo Bureau of Reclamation dos Estados Unidos da América do Norte.
- Classes de Terras para Irrigação: empregou-se as no<u>r</u> mas recomendadas pelo U.S.B.R., atual Water and Power Research.
- Legenda Explicativa adotada pelo DNOCS para classificação dos solos aluviais.

A classificação do solo teve como complemento básico o arranjamento textural, a alcalinidade e/ou salinidade relacionadas com a profundidade, adicionando-se a drenagem interna, de modo a ter-se uma classificação de cunho científico tecnologico.

Alguns critérios tiveram de ser criados e outros modificados. Usou-se letras, números e símbolos para significarem, em conjunto, na planta, a classificação que pretendíamos dar.

- a) A letra A maiúscula representa a palavra aluvião.
- b) A letra e minúscula quer dizer eutrófico.
- c) Para a profundidade estabeleceu-se o seguinte crit $\underline{\tilde{e}}$ rio:
 - 0 40 cm (pouca profundidade) 1
 - 40 80 cm (média profundidade) 2

80 - 160 cm (profundos) - 3

mais de 160 cm (muito profundo) - 4

- d) Para a textura fez-se a modificação que se segue:
 - L textura leve argila menos de 15%
 - M textura media argila entre 15 35%
 - Mp textura médio-pesada; abrange as classes franco argiloso e franco argilo-siltoso.
 - P textura pesada argila com mais de 35%.
- e) Com relação a drenagem interna de solos adotamos a classificação padronizada pela Sociedade Brasileira de Ciências do Solo, portanto:
 - ed excessivamente drenado
 - fd fortemente drenado
 - ad acentuadamente drenado
 - bd bem drenado
 - mod- moderadamente drenado
 - id imperfeitamente drenado
 - md mal drenado
 - mmd- muito mal drenado.
- f) Para a alcalinidade e salinidade criou-se os seguintes parâmetros:
 - la (ligeiramente alcalino) 10 15% de sódio troc $\underline{\underline{a}}$ vel.
 - a (alcalino) 15 20% de sódio trocável.
 - ma (muito alcalino) 20 30% de sódio trocável.
 - fa (fortemente alcalino) mais de 30% de sódio trocável no complexo sortivo.
 - ls (ligeiramente salino) 2 4 mmhos x cm⁻¹.
 - s (salino) 4 8 mmhos x cm⁻¹.
 - ms (muito salino) mais de 8 mmhos x cm⁻¹.

g) A seta em posição vertical descendente significa:

- a partir de:

A combinação desses fatores permitiu a elaboração da fórmula empírica, em cujo numerador, encontra-se além das letras que representam a classificação científica Ae, a sequên cia textural e a drenagem interna; no denominador figura o tipo de alcalinidade e salinidade, sua concentração e distribuição no solo.

O índice numérico ao lado da classe textural ou do tipo de halomorfia indica a profundidade da ocorrência da classe
textura ou halomorfia. Se dois ou mais aparecem juntos após
uma classe textural ou um tipo de halomorfia, significa que
aquela ou esta, abrange as profundidades representadas por índices numéricos.

O emprego da seta, na formula cartográfica apos uma classe textura ou a um tipo de halomorfia quer dizer que, aque la ou esta, não varia até o final do perfil.

5.3 - Legenda de Classificação

- Ae₁ Aluvião eutrófico de textura média, imperfeita mente drenado.
- Ae₂ Aluvião eutrófico de textura média/leve a partir de média profundidade, bem drenado.
- Ae₃ Aluvião eutrófico de textura média/média pesada a pouca profundidade/pesada a partir de média profundidade, salino a pouca profundidade muito alcalino e ligeiramente salino a partir de média profundidade, moderadamente drenado.
- Ae₄ Aluvião eutrófico de textura média/pesada a partir de profundo, fortemente alcalino a pouca profundidade, fortemente alcalino e salino a partir de média profundidade, moderadamente drenado.

- Ae₅ Aluvião eutrófico de textura média/pesada a partir de profundo, fortemente alcalino e ligeira mente salino a partir de pouca profundidade, imperfeitamente drenado.
- Ae₆ Aluvião eutrófico de textura média pesada, forte mente alcalino e muito salina a pouca profundida de, fortemente alcalino a partir de média profundidade, moderadamente drenado.
- Ae₇ Aluvião eutrófico de textura média pesada/pesada a partir de média profundidade, mal drenado.
- Ae₈ Aluvião eutrófico de textura média pesada/pesada a partir de pouca profundidade, fortemente alcalino e salina a partir de pouca profundidade, moderadamente drenado.
- Ae₉ Aluvião eutrófico de textura média pesada/pesada a partir de média profundidade, muito alcalino e salina a partir de média profundidade, moderadamente drenado.
- Ae₁₀ Aluvião eutrófico de textura média pesada/pesada a partir de profundo, fortemente alcalino e ligeiramente salino a pouca profundidade, fortemente alcalino e salino a partir de média profundidade, moderadamente drenado.
- Ae₁₁ Aluvião eutrófico de textura pesada, moderadame<u>n</u> te drenado.
- Ae₁₂ Aluvião eutrófico de textura pesada, mal drenado.
- Ae₁₃ Aluvião eutrófico de textura pesada, fortemente alcalino e salino a partir de pouca profundidade, imperfeitamente drenado.
- Ae₁₄ Aluvião eutrófico de textura pesada, fortemente alcalino e salino a média profundidade, fortemente te alcalino em profundidade, imperfeitamente dre nado.

- Ae 15 Aluvião eutrófico de textura pesada, fortemente alcalino e salino a média profundidade, fortemente te alcalino e ligeiramente salino a partir de profundo, moderadamente drenado.
 - PE Podzolico vermelho amarelo equivalente eutrofico plinthico abruptico, A fraco textura média, caatinga arborea arbustiva, relevo suave ondulado, imperfeitamente drenado.
 - V₁ Vertisol A moderado textura média/argilosa caa tinga arborea arbustiva relevo suave ondulado.
 - V₂ Vertisol A moderado textura argilosa caatinga ar borea arbustiva relevo suave ondulado.
- AQd₁ Areia quartzosa distrófica A fraco fase caatinga arbórea arbustiva relevo suave ondulado.

5.4 - Descrição das Unidades

UNIDADE: Ae1

Classificação: Aluvião eutrófico de textura média, imperfeitamente drenado.

Representação Cartográfica: Ae M id

Perfil Representativo: 01

Area da unidade: 91,12 ha

Percentual da área da unidade: 5,46%

Drenagem interna: Imperfeitamente drenado

Síntese das Carracterísticas Morfológicas: A espessura da camada que compõe o perfil é de 169 cm.

A coloração varia de bruno acinzentado escuro acinzentado muito escuro.

A textura é média, variando de franco argilo arenoso a franco arenoso.

A porosidade é constituída de muitos poros muito pequenos, pequenos e médios.

Síntese das Propriedades Físicas: A composição granulométrica estã assim constituída: areia 58%, silte 23% e argila 18%.

A densidade aparente varia de 1,65 a 1,76, com média de 1,70.

A capacidade de campo varia de 10 a 13% com média de 11,5%.

0 ponto de murchamento, tem como valores extremos 4 e 5%, com valor médio de 4,5%.

A água útil oscila entre 8 e 6% com média de 7%.

Síntese das Propriedades Químicas: A soma de bases (S), tem valor máximo de 13,22 e mínimo de 10,02 mEq/100g de solo, com média de 13,01 mEq/100g de solo. A capacidade de troca de cátions (T), tem como valores máximo e mínimo de 15,79 e 10,02 mEq/100g de solo, com média de 13,35 mEq/100g de solo.

A saturação de bases varia de 93 a 100%, com média de 98%.

A matéria orgânica em superficie é de 1,28%.

0 pH em água varia de 6,7 a 8,0.

A condutividade elétrica não apresenta valores prejudiciais às culturas.

O percentual de sódio trocavel varia de 0,56 a 5,63%, portanto, não apresenta concentrações que prejudiquem o desen - volvimento das culturas a implantar.

Classe de Terra para Irrigação:

Fatores Condicionantes da Classe de Terra para Irrigação:

As principais limitações dizem respeito a drenagem que é feita de forma imperfeita ocorrendo no período invernoso riscos de inundações anuais, frequentes e demorada.

Além disso, trata-se de um solo com alguma limitação de fertilidade e de textura tendente a arenosa.

Medidas para melhoramento da Classe de Terra para Irrigação:

Desobstrução do canal natural de deságua e sua regularização topográfica a fim de drenar a área e evitar-se as inundações frequentes no inverno.

O emprego de fertilizantes orgâno-mineral e a enterria de restolhos, culturais e do próprio modo capinado são outras práticas importantes para a melhoria das condições morfológicas, físicas e químicas do solo.

Fertilidade:

É média sob todos os aspectos, disponibilidade de elementos minerais, pH, matéria orgânica, capacidade de trocas de cátions, etc.

Recomendações sobre o Uso Agricola:

A mecanização agrícola pode ser feita sem limitações desde que o solo não esteja saturado ou inundado, para tanto simples gradagens são suficientes para um bom preparo da terra.

A drenagem é indispensavel, sem a qual, o solo fica restrito a um pequeno número de culturas (cana, capim e arroz).

- O método de irrigação mais indicado seria a aspersão ou o canhão ou mesmo pivô-central.
- O tipo de adubação orgâno-mineral é o mais recomendá vel.
- O solo se presta nas condições atuais para cana, capim e arroz. Solucionado o problema de drenagem e inundações poder-se-ia cultivá-lo com fruticultura em geral, hortaliças, algodão, milho, sorgo e feijão.

UNIDADE: Ae2

Classificação: Aluvião eutrófico de textura média/leve a partir de média profundidade, bem drenado.

Representação Cartográfica: Ae M/L₂ ↓ db

Perfil Representativo: 04

Área da Unidade: 21,25 ha

Percentual da Area da Unidade: 1,27%

Drenagem Interna: Bem drenado

Síntese das Características Morfológicas: A espessura da camada superficial, considerada de textura média é de 44 cm, sua coloração é bruno acinzentado escuro e apresenta muito pequenos e comuns pequenos.

Com relação a segunda camada, classificada como textura leve (areia), a espessura é de aproximadamente 156 cm; a color<u>a</u> ção é amarela, e a porosidade é constituída de muitos poros pequenos.

Síntese das Propriedades Físicas: Na análise granulométrica as participações das frações areia, silte e argila são respectivamente 55%, 26% e 19%, isto para a primeira camada. A densidade aparente apresenta valor de 1,61%; a unidade a 1/3 e a 15 atm possuem valores respectivos de 13 e 6%; a água útil tem média de 7%.

Na camada de textura leve, observa-se os seguintes percentuais da composição granulométrica: areia 94%, silte 2% e ar gila 4%. A densidade aparente é de 1,43%; a umidade na capacida de de campo é 5%, no ponto de murchamento 3%, e a água útil é 3%.

Sintese das Propriedades Químicas: Na camada de textura média, a soma dos cátions trocáveis é 12,07 mEq/100g de solo e o valor da capacidade de troca de cátions é 14,11 mEq/100g de solo; a saturação de bases apresenta- se com valor de 86%.

A matéria orgânica em superfície se encontra com valor de 1,49%. Nesta camada, devido aos baixos valores de condu tividade elétrica e do PSI, não há problemas de salinização do solo.

Na segunda camada, a soma de bases (S) tem valor de 3,68 mEq/100g de solo; é de 4.40 mEq/100g de solo a CTC; e a saturação de bases possui valor de 84%. Nesta camada o PSI é 0,91% e a CE 0,39 mmhos/cm; portanto não há concentração de sais solúveis que impliquem na diminuição do rendimento das culturas.

Fatores Condicionantes de Classe de Terra para Irrigação:

A textura leve a partir dos 44,00 cm, a fertilidade média e a baixa capacidade de troca de cátions.

Medidas para Melhoramento da Classe de Terras para Irrigação:

Consistem na adubação com fertilizantes orgânicos com vistas a melhoría das condições morfológicas, físicas e químicas do solo. A matéria orgânica aumenta inclusive a capacidade de retenção dos fertilizantes minerais e da água.

Fertilidade:

Média expressa por uma quantidade disponível de elementos minerais, boa capacidade de troca de cátions, elevada saturação de bases, pH ligeiramente ácido e ausência de alcalinidade e salinidade.

Recomendações Sobre o Uso Agrícola

A mecanização agrícola pode ser procedida sem qualquer limitação.

As adubações orgâno-minerais são as mais indicadas.

Qualquer metodo de irrigação pode ser empregado neste solo.

A aptidão cultural é bastante vasta podendo o solo ser cultivado com fruteiras, culturas industriais, hortaliças, gramíneas, etc.

UNIDADE: Ae,

Classificação: Aluvião eutrófico de textura média/média pesada a pouca profundidade/pesada a partir de média profundidade, salino a pouca profundidade, muito alcalino e ligeiramente salino a partir de média profundidade, moderadamente drenado.

Representação Cartográfica: Ae M/Mp1/P2↓ mod s1mals2 ↓

Perfil Representativo: 12

Area da Unidade: 128,25 ha

Percentual da Ârea da Unidade: 7,68%

Drenagem Interna: Moderadamente drenado

Síntese das Características Morfológicas: A camada superficial de textura média apresenta-se com espessura de 15 cm; sua coloração é bruno. Possui poros comuns pequenos. A textura é franco argilo arenoso. Transiciona de maneira clara e plana para a camada subsequente.

A segunda camada de textura média pesada (franco argiloso), possui espessura de 49 cm; a coloração é bruno escuro. A porosidade é composta de poucos poros muito pequenos e pequenos. A transição para a camada inferior é clara e plana.

A terceira camada (pesada), mede 116 cm de espessura; coloração bruno avermelhado escuro, poros comuns muito pequenos, textura argilosa.

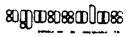
Síntese das Propriedades Físicas: A camada superficial de textura média, apresenta em sua composição granulométrica 47% de areia, 24% de silte e 29% de argila. A densidade aparente é 1,57. As constantes de umidade apresentam os seguintes percentuais: capacidade de campo
18%; ponto de murchamento 8% e água útil 10%.

A camada média pesada na granulometria possui 48%, 29% e 33% respectivamente para areia, silte e argila. A densidade aparente é 1,55. Com relação as constantes hídricas observa-se os seguintes valores: 23% na capacidade de campo; 11% no ponto de murchamento e 12% de água útil.

Para a terceira camada (argilosa), os resultados das frações areia, silte e argila são pela ordem: 24%, 33% e 43%. A densidade aparente é 1,77. A capacidade de campo, o ponto de murchamento e a água útil, apresentam valores respectivos de 33%, 15% e 18%.

Síntese das Propriedades Químicas: Para a primeira camada, o valor "S" é de 18,46 mEq/100g de solo. A CTC apresenta-se com 19,50 mEq/100g de solo, enquanto que a saturação de bases é 95%.

Na segunda camada, a soma de bases é 18,05mEq/100g de solo; a capacidade de troca de cátions é 19,26 mEq/100g de solo, e a saturação de bases 94%.


Com relação a terceira camada (textura pesada), observa-se um valor de 28,48 mEq/100g de solo para a soma de bases, 30,40 mEq/100g de solos para os cátions trocáveis e 94% para a saturação de bases.

A matéria orgânica em superfície é 1,42%.

0 pH na primeira camada é 6,2; na segunda 6,4 e na terceira 5,5.

Na primeira camada a CE é 7,80 mmhos/cm.

O PSI somente na camada argilosa apresenta valor (22,86%) o que classifica a unidade como muito alcalina naque-la profundidade.

Classe de Terra para Irrigação: 3sd L22By

Fatores Condicionantes de Classe de Terra para Irrigação:

A sequência textural, a salinidade e alcalinidade, a drenagem moderada e a baixa permeabilidade.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Consistem na melhoria das condições da drenagem e da permeabilidade, além de redução ou correção dos níveis de alca linidade e salinidade. Para o primeiro caso, recomenda-se o em prego de um bom sistema de drenagem e o uso de adubos orgâni - cas e/ou verdes. No segundo caso, sugere-se o emprego de fertilizantes minerais em formas ricas em cálcio, de reação ácida e com baixos índices de alcalinidade e de salinidade. Usar do ses dágua nas irrigações maiores para o excesso lavar o solo.

Fertilidade:

A fertilidade se não fora a condutividade elétrica mui to elevada, poderia ser considerada alta, uma vez que a disponibilidade de elementos minerais é boa, bem como a capacidade de troca de cátions alta e a saturação de bases.

Recomendações Sobre o Uso Agricola:

O solo pode ser mecanizado sem qualquer limitação.

As adubações devem ser mistas, obedecendo os critérios citados acima.

O método de irrigação deve ser gravitário e a água de ve ser quantificada de forma a permitir lavagens do solo, quan do necessários.

A cultura mais indicada nas condições atuais é o arroz. Desde que seja diminuida a salinidade pode-se pensar em algo dão, cana e capins. UNIDADE: Ae L

Classificação: Aluvião eutrófico de textura média/pesada a par tir de profundo, fortemente alcalino a pouca profundidade, fortemente alcalino e salino a partir de média profundidade, moderadamente dre nado.

Representação Cartográfica: Ae $\frac{M/P3}{fa1fas2+}$ mod

Perfil Representativo: 07

Area da Unidade: 34,00 ha

Percentual da Área da Unidade: 2,04 %

Drenagem Interna: Moderadamente drenado

Síntese das Características Morfológicas: É de 120 cm a espessura da camada superficial, classificado como de textura média (franco argilo arenoso). Sua coloração varia de bruno escuro a bruno amarelado; a porosidade é considerada boa, vez que apresenta muitos poros nas sub-camadas Ap, IIC1 e IIIC2.

Com relação a segunda camada, observa-se uma espessura de 50 cm, coloração bruno acinzentado muito escuro, textura argilosa e poucos poros muito pequenos.

Síntese das Propriedades Físicas: A análise granulométrica referente a primeira camada revelou teores médios de areia, silte e argila com os seguintes valores: 54%, 22% e 24%, sendo as texturas de todas as sub-camadas franco argilo arenoso. Nesta mesma camada, a densidade aparente apresenta média de 1,64; a capacidade de campo tem média em torno de 16%, o ponto de murchamento apresenta como valor percentual 7% e a água útil 9%.

Na segunda camada (argilosa), os teores de areia, silte e argila são respectivamente 26%, 31% e 43%. A densidade aparente possui valor em torno de 1,61. Com relação as constantes hídricas, observa-se os seguintes valores: capacidade de campo 29%, ponto de murchamento 13% e água útil 16%.

Síntese das Propriedades Químicas: A soma de cátions trocáveis no complexo sortivo, apresenta valor médio em torno de 16,09 mEq/100g de solo, na camada superficial. Nes ta mesma camada, a capacidade de troca de cátions pos sui média em volta de 16,67 mEq/100g de solo. A saturação de bases apresenta média de 95%.

Para a segunda camada, devido a ausência de H++LA +++, os valores de "S" e "T" são iguais e em torno de 50,61 mEq/100g de solo, portanto a saturação é de 100%. A matéria orgânica em superfície é 1,42%.

A condutividade elétrica na primeira camada, apresenta-se na profundidade de 75 a 120 cm com valor de 4,80 mmhos / cm o que confere a esta unidade um caráter ligeiramente salino.

O percentual de sódio intercambial entre 30-120 cm de profundidade, apresenta-se extremamente concentrado com valores variando entre 44,13% e 62,94%. Este fato merece atenção, pois esse teor de sódio tende a influir negativamente no rendimento das culturas à serem instaladas.

Na segunda camada, de textura argilosa, nota-se a CE com valor de 4,20 mmhos/cm, portanto ligeiramente salino jã o PSI, decresceu um pouco com a profundidade, apresentando valor de 32,56% o que o torna ainda muito prejudicial às culturas.

Classe de Terra para Irrigação: 3sd L22By

Fatores Condicionantes de Classe de Terra para Irrigação:

A alcalinidade e salinidade elevadas, a drenagem moderada e a permeabilidade baixa.

Medidas para Melhoramento de Classe de Terra para Irrigação:

Introdução de um eficiente sistema de drenagem. Aplicação de gesso. Lavagem do solo. Emprego de fertilizantes que possam minorar as condições alcalinidade e salinidade. Uso de adubos orgânicos e/ou verdes para melhorar a estrutura, aera ção e permeabilidade do solo.

Fertilidade:

So não e alta devido a alcalinidade e salinidade.

Recomendações Sobre o Uso Agricola

A mecanização agrícola pode ser empregada sem nenhuma restrição.

As adubações devem ser muito cuidadosas de modo a não agravarem os problemas de salinidade e alcalinidade. O super - fosfato simples, o sulfato de potássio são aconselháveis para este tipo de solo.

As adubações orgânicas ou verdes são muito benéficas.

A irrigação deve ser por metodo gravitário para permitir a lavagem do solo.

As culturas de arroz e algodão são as mais indicadas podendo a cana e os capins apresentarem rendimentos satisfatorios.

Sanado os problemas de alcalinidade e salinidade e o que sería difícil e muito oneroso - outras culturas poderíam ser exploradas com sucesso.

UNIDADES: Ae5

Classificação: aluvião eutrófico de textura média/pesada a par tir de profundo, fortemente alcalino e ligeiramente salino a partir de pouca profundidade, im perfeitamente drenado.

Representação Cartográfica: A e $\frac{M/P3 + 1}{fa sl + 1}$ id

Perfil Representativo: 14

Area da Unidade: 42,75 ha

Percentual da Area da Unidade: 2,56%

Drenagem Interna: Imperfeitamente drenado

Síntese das Características Morfológicas: É de 90cm a espessura da camada média; sua coloração varia de bruno acinzentado muito escura a preto; a textura é franco argilo arenoso; a porosidade nesta camada é constituída de poros comuns muito pequenos.

A segunda camada, possui 45 cm de espessura; sua coloração é bruno escuro; compõem-se de poros comuns muito peque - nos e pequenos a porosidade; a textura é argilosa.

Síntese das Propriedades Físicas: Na camada superficial o resultado da análise da composição granulométrica é a seguinte: areia 49%, silte 26% e argila 25%. A densidade aparente é média em torno de 1,58. As constantes hídricas apresentam-se com os seguintes valores médios: capacidade de campo 16%; ponto de murchamento 6%; água útil 10%.

Na segunda camada, considerada de textura pesada os percentuais médios de areias, silte e argila são respectivamen

te 33%, 26% e 41%. A densidade aparente é média em torno de 1,75. A capacidade de campo, o ponto de murchamento e a água útil possuem em média os seguintes valores: 34%, 14% e 20%.

Síntese das Propriedades Químicas: Com relação aos dados químicos, observa-se, que a soma de bases é média em torno de 24,64 mEq/100g de solo; a capacidade de troca de cátions é média em torno de 25,23 mEq/100g de solo; a saturação de bases apresenta média por volta de 97%.

Na camada mais profunda, de textura pesada, a soma de bases trocáveis e a capacidade de troca de cátions possuem valores iguais e em torno de 20,60 mEq/100g de solo. Este fato implica em que a saturação de bases é de 100%.

Com relação a condutividade elétrica, os valores variam de 0,82 a 3,20 mmhos/cm na primeira camada. Na segunda camada a CE é de 2,80 mmhos/cm.

O percentual de sódio intercambial, é extremamente elevado, variando de 7,08 a 69,95% na camada mais externa e na segunda camada possui valor de 50,92%.

A materia orgânica na superficie ê 1,82%.

Classe de Terra para Irrigação: $\frac{3sd}{L22By}$ f2al

Fatores Condicionantes da Classe de Terra para Irrigação:

A elevada alcalinidade associada à tendência de salinização, afora a drenagem imperfeita, a baixa permeabilidade e o risco de inundação.

Medidas para Melhoramento de Classe de Terra para Irrigação:

Fazer um sistema de drenagem subterrânea e aplicar gesso no solo. Apos completadas as reações químicas decorren - tes do uso do gesso, fazer a lavagem do solo.

Fertilidade:

Se não fora o problema da forte alcalinidade o solo seria de alta fertilidade.

Recomendações Sobre o Uso Agrícola:

A mecanização agrícola pode ser procedida sem restrições. Subsolagens seriam práticas bastante recomendáveis.

As adubações devem ser orgânico-minerais.

O método de irrigação deve ser gravitário, por inundação.

A cultura indicada nestas condições é o arroz.

UNIDADE: Ae,

Classificação: Aluvião eutrófico de textura média pesada, forte mente alcalino e muito salino a pouca profundida de, fortemente alcalino a partir de média profundida didade, moderadamente drenado.

Representação Cartográfica: Ae Mp mod famslfa2 +

Perfil Representativo: 13

Ārea da Unidade: 95,63 ha

Percentual da Área da Unidade: 5,73%

Drenagem Interna: Moderadamente drenado

Síntese das Características Morfológicas: A espessura da camada é de 135cm⁺; a coloração varia de bruno escuro a cin - zento muito escuro; a porosidade é composta de poros comuns e poucos poros muito pequenos; a textura de to- das as sub-camadas é franco argilosa; as transições en tre sub-camadas é gradual e plana.

Síntese das Propriedades Físicas: Quanto a composição granulomé trica, a unidade apresenta os seguintes valores médios: areia 40%, silte 26% e argila 34%.

A densidade aparente varia de 1,51 a 1,73 com média de 1,64.

A capacidade de campo oscila entre 26 e 30%, com média de 28%; o ponto de murchamento é médio em torno de 13% com valores extremos de 13% e 12%; a água útil apresenta limites de 14 e 17%, com 15% em média.

Síntese das Propriedades Químicas: A soma de bases trocáveis a presenta 28,87 mEq/100g de solo como média. A capacidade de troca de cátions possui média em torno de 29,62 mEq/100g de solo. O índice de saturação de bases varia de 95 a 100% com média em torno de 98%.

A matéria orgânicaem superfície é 1,35%.

Com relação a concentração de sais solúveis, a unidade apresenta elevados índices vez que em superfície é de 15,00 mmhos/cm. A medida que aumenta a profundidade esta concentra ção diminui para 7,50 mmhos/cm.

Em toda a profundidade do perfil, observa-se uma saturação com sódio extremamente alta, chegando a atingir 68,66% na profundidade 90-135 cm.

Fatores Condicionantes de Classe de Terra para Irrigação:

O principal é a elevada alcalinidade e salinidade, em bora a drenagem moderada e baixa permeabilidade também sejam fatores limitantes.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Para a recuperação deste solo se faz necessário a introdução de um bom sistema de drenagem, inclusive subterrânea, a aplicação de gesso e o uso de lavagem posteriores.

Fertilidade:

É considerada baixa temporariamente, devido a elevada salinidade e alcalinidade. Os demais fatores são favoráveis (ca pacidade de troca de cátions, saturação de bases, elementos minerais, pH, etc).

Recomendações Sobre o Uso Agricola:

A mecanização agrícola pode ser feita sem restrições.

As adubações devem ser cuidadosas para não agravarem o processo. Os adubos orgânicos melhoram a estruturação do solo e em consequência aumentam a aeração e a permeabilidade.

A irrigação deve ser feita por métodos gravitários de forma a permitir a lavagem do solo.

A cultura indicada, nas condições atuais, é o arroz.

UNIDADE: Ae,

Classificação: Aluvião eutrófico de textura média pesada/pesada a partir de média profundidade, mal drenado.

Representação Cartográfica: Ae Mp/P2 ↓ md

Perfil Representativo: 02

Area da Unidade: 38,75 ha

Percentual da Área da Unidade: 2,32%

Drenagem Interna: Mal drenado

Síntese das Características Morfológicas: A espessura da camada de textura média pesada é de 46 cm, enquanto que a camada de textura argilosa tem espessura igual ou superior 105 cm. A coloração da primeira camada é bruno acinzentado muito escuro e da segunda camada é bruno muito escuro.

Síntese das Características Físicas: A composição granulométrica média da camada de textura média pesada está assim constituída: areia 42%, silte 28% e argila 30%.

A segunda camada apresenta os seguintes percentuais m $\underline{\tilde{e}}$ dios: areia 27%, silte 31% e argila 42%.

A densidade aparente na camada superficial apresenta valor de 1,68, enquanto que na segunda camada o valor é de 1,56.

A capacidade de campo, o ponto de murchamento e a água útil apresentam valores respectivos de 24, 10 e 14% na primeira camada. Na segunda camada, observa-se valores de 34, 16 e 18% para capacidade de campo, ponto de murchamento e água útil respectivamente.

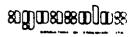
Síntese das Propriedades Químicas: A soma de bases na camada de textura média pesada apresenta-se com valor de 16,98 mEq/100g de solo, a capacidade de troca de cátions tem valor de 18,14 mEq/100g de solo e a saturação de bases (V%) é de 94%. Na segunda camada, de textura pesada a soma de bases e a capacidade de troca de cátions possuem valores iguais em torno de 20,34 mEq/100g de solo, o que implica em que a saturação de bases apresente valor de 100%.

A matéria orgânica na superfície é 1,16%.

Esta unidade se apresenta com valores muito baixos relativos a condutividade elétrica e percentual de sódio trocável, estando portanto isenta de níveis de sais e alcalís que prejudiquem as culturas a serem implantadas.

Classe de Terra para Irrigação: 3d L22BZ

Fatores Condicionantes de Classe de Terra para Irrigação:


A textura pesada, a má drenagem, a baixa permeabilida de e o risco de inundação frequente.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Consistem basicamente, em melhorarem as condições de drenagem e permeabilidade do solo e da área da unidade. Dentre estas: aplicar adubos orgânicos ao solo ou adubos verdes, visando uma melhor estruturação do solo, aeração e permeabilidade; melhorar a drenagem natural da área através de regularização, alargamento e aprofundamento do riacho que corta a área desta unidade de solo, até o seu desaguadouro no ario Carás.

Fertilidade:

Boa em todos os sentidos. Tem boa reserva de elemen - tos minerais, boa capacidade de troca de cátions, elevada saturação de bases, bom pH e não apresenta sódio trocável no complexo sortivo em percentuais prejudiciais e em sais solúveis.

Recomendações Sobre o Uso Agricola:

São solos com alguns problemas de natureza física que se refletem numa baixa permeabilidade e pequena aeração, razão porque, limita de certa forma sua aptidão cultural, isto mesmo sem se considerar os riscos de inundação e a mã drenagem.

A mecanização agrícola pode ser feita para o preparo do solo, porém recomenda-se fazê-la estando o solo com teor de umidade adequado, evitando-se portanto, de trabalha -lo quase seco ou já molhado.

A drenagem é a prática mais necessitada sem a qual a aptidão cultural fica muito reduzida e inclusive o solo poderá vir a apresentar problemas futuros de salinidade.

As adubações devem ser orgânico -minerais com vistas principalmente a manter a fertilidade atual.

O solo se presta ao arroz, a cana, aos capins e, desde que solucionado o problema de drenagem e inundações, servirá também para cultivos de milho, sorgo, banana e outras culturas.

UNIDADE: Aeg

Classificação: Aluvião eutrófico de textura média pesada/pesada a partir de pouca profundidade, fortemente alcalino e salino a partir de pouca profundidade moderadamente drenado.

Representação Cartográfica: Ae Mp/P1+ mod fas1 +

Perfil Representativo: 06

Area da Unidade: 46,75 ha

Percentual da Área da Unidade: 2,80%

Drenagem Interna: Moderadamente drenado

Síntese das Características Morfológicas: A espessura da camada de textura média pesada vai até aproximadamente 29 cm, enquanto que a camada subsequente, de textura pesada tem espessura igual a 141 cm. A coloração da primeira camada é bruno acinzentado muito escuro, enquanto que a segunda camada a coloração varia de bruno a bruno avermelhado com mosqueado vermelho amarelado. A porosidade do perfil é composta em média de poucos poros muito pequenos.

Síntese das Propriedades Físicas: A composição granulométrica para a camada de textura média pesada se distribui do seguinte modo: areia 33%, silte 29% e argila 38%. Para a segunda camada, a composição granulométrica é a seguinte: areia tem média em torno de 28%, silte é médio por volta de 25% e a argila tem como valor central 47%.

A densidade aparente para a camada superficial está por volta de 1,58, enquanto que, para a camada de textura pesa da é de 1,62.

A capacidade de campo para a camada franco argilosa (la. camada) é de 29%. Para a camada argilosa (2a. camada) é média em torno de 36%.

O ponto de murchamento e a agua util para a camada franco argilosa possuem valores respectivos de 13 e 16%. Para a segunda camada, as mesmas constantes hidricas e na mesma sequência são 16 e 20%.

Síntese das Propriedades Químicas: A soma de bases (S) para a primeira camada possui valor de 14,87 mEq/100g de solo. lo, enquanto que para a camada subsequente o valor da soma de bases é de 36,06 mEq/100g de solo.

Com relação a capacidade de troca de cátions, a primeira camada apresenta-se com 16,27~mEq/100g de solo e a segunda tem média girando em torno de 37,17mEq/100g de solo.

A saturação de bases apresenta valores de 91 e 96% respectivamente para a primeira e segunda camada.

A matéria orgânica na superfície é 1,53%.

A condutividade elétrica a partir de 29 cm de profundidade apresenta valor médio de 4,45 mmhos/cm, o que confere a esta unidade ligeiros índices de salinidade.

O percentual de sódio trocável no complexo sortivo até a profundidade de 29 cm encontra-se com valor de 11,92%; daí até a profundidade de 170 cm este valor aumenta substancialmente chegando até 43,80%. Tal fato nos leva a ter cuidados especíais com esta unidade visando corrigir os efeitos prejudiciais dos alcalis.

Fatores Condicionais de Classe de Terra para Irrigação:

A textura pesada, e elevada alcalinidade, a salinidade, a baixa permeabilidade, a drenagem moderada e o risco de inundação temporário.

Medidas para Melhoramento de Classe de Terra para Irrigação:

Sistema de drenagem eficiente. Aplicação de gesso. la vagem. Emprego de fertilizantes que tendem a reverter a tendên cia de reação alcalina. Uso de adubo orgânico ou adubo verde para melhorar a estruturação do solo e consequentemente a permeabilidade e aeração do mesmo.

Fertilidade:

Só não consegue ser alta devido ao percentual elevado de sódio no complexo de troca e à condutividade elétrica superior a 4,00 mmhos x cm -1.

Recomendações Sobre o Uso Agricola:

Mecanização agrícola pode ser procedida, porém se o solo estiver muito seco ou molhado dificulte o trabalho de máquina.

As adubações devem ser cuidadosas para não agravarem o problema de alcalinidade e salinidade.

O método de irrigação mais indicado é o gravitário. As culturas recomendáveis são o arroz, a cana e o algodão.

UNIDADE: Aeo

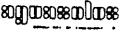
Classificação: Aluvião eutrófico de textura média pesada/pesada a partir de média profundidade, muito alcali no e salino a partir de média profundidade, moderadamente drenado.

Representação Cartográfica: Ae Mp/P2↓ mod mas 2 ↓

Perfil Representativo: 05

Ārea da Unidade: 36,25 ha

Percentual da Área da Unidade: 2,17%


Drenagem Interna: Moderadamente drenado

Síntese das Características Morfológicas: É de 35 cm a espessura da camada superfical (textura média pesada); sua coloração é bruno escuro; a porosidade é composta de poros comuns pequenos e muito pequenos.

Com relação a segunda camada, sua espessura é de 165 cm, sua coloração varia de bruno a bruno escuro e a porosidade é constituída de poros comuns muito pequenos.

Síntese das Propriedades Físicas: Na composição granulométrica as frações areia, silte e argila participam com 37%, 28% e 35% respectivamente. A densidade aparente apresenta valor médio em torno de 1,61. As constantes físicas ou sejam a unidade a 1/3 atm, a 15 atm e a água útil apresentam valores respectivos de 28%, 13% e 15%.

Na segunda camada, a análise granulométrica revelam para a areia valores de 29% e 25% com média de 27%; o silte pos sui extremos de 26 e 28%, girando a média em torno de 27%; para a argila, a média é 46% com valores limites de 45 e 47%. Nesta camada, a densidade aparente é média por volta de 1,64; a capacidade de campo tem média de 33%; a unidade em capacida-

de de campo está por volta de 14%; a água útil é média em torno de 19%.

Síntese das Propriedades Químicas:

Na camada superior, a soma de bases apresenta valor de 17,62 mEq/100g de solo; a capacidade de troca de cátions é 19,24 mEq/100g de solo e a saturação de bases 92%.

A matéria orgânica em superfície é 1,38%.

A condutividade elétrica e o percentual de sódio trocável nesta primeira camada, apresentam baixos valores, portan to não apresentam problema de sais e alcalis. O pH nesta camada é 5,7, ligeiramente ácido.

Na camada de textura pesada, o valor da soma de bases trocáveis é médio em torno 33,10 mEq/100g de solo, enquanto que a capacidade de troca de cátions varia de 37,00 a 33,63mEq/100g de solo com média girando em torno de 35,32 mEq/100g de solo. A saturação de bases (V), varia entre 93 e 94%.

A condutividade elétrica é média em torno de 4,00 mmhos/cm o que confere a unidade um pequeno grau de salinidade. Com relação ao percentual de sódio trocável, observa-se valores variando entre 25,05 e 27,15%, o que é considerado como muito alcalino.

Classe de Terra para Irrigação:
$$\frac{3sd}{L22By}$$
 al

Fatores Condicionantes da Classe de Terra para Irrigação:

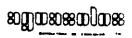
A textura pesada, a alcalinidade e salinidade, baixa permeabilidade e a drenagem lenta.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Correção do solo mediante gessagem e posterior lavagem. Drenagem subterrânea deverá ser feita. Aplicação de fertilizantes ricos, em cálcio e de reação ácida, além de apresentarem baixos índices de alcalinidade e de salinidade.

Adubos orgânicos e adubos verdes devem ser empregados a fim de melhorarem as condições de estruturação e consequentemente de permeabilidade e aeração.

Fertilidade. A fertilidade só não é considerada alta devido a alcalinidade e a salinidade presentes em níveis indesejaveis.


Recomendações Sobre o Uso Agricola:

A mecanização agrícola pode ser feita, porém, se o so lo estiver muito seco ou molhado, o rendimento das maquinas fica comprometido.

As adubações devem ser muito cuidadosas para não agravarem os problemas de alcalinidade e salinidade.

Os métodos de irrigação por gravidade são mais recomendáveis.

A aptidão cultural é restrita para culturas como o arroz, o algodão, a cana e os capins.

UNIDADE: Ae10

Classificação: Aluvião eutrófico de textura média pesada/pesada a partir de profundo, fortemente alcalino e
ligeiramente salino a pouca profundidade, forte
mente alcalino e salino a partir de média profundidade, moderadamente drenado.

Representação Cartográfica: Ae Mp/P3 → mod fals1fas2→

Perfil Representativo: 03

Area da Unidade: 141,50 ha

Percentual da Área da Unidade: 8,48%

Drenagem Interna: Moderadamente drenado

Síntese das Características Morfológicas: A espessura da camada de textura média pesada é de 109 cm; sua coloração
varia de bruno acinzentado muito escuro a bruno escuro. Na camada IIIC2, aparece mosqueado com cores variando entre bruno e cinza escuro.

Com relação a segunda camada, considerada de textura pesada a espessura gira em torno de 51 cm, a coloração é bruno muito escuro, com mosqueado de bruno escuro.

A porosidade em todo o perfil é considerada regular, constituída de poros comuns muito pequenos e pequenos.

Síntese das Propriedades Físicas:

Na camada considerada de textura média pesada observa-se a seguinte composição granulométrica: fração areia 37%, sil
te 28% e argila 35%. A densidade aparente possui valores extre
mos variando entre 1,73 a 1,91 com média de 1,83. A capacidade de campo, o ponto de murchamento e a agua util apresentam

valores respectivos de 26,12 e 14%.

Na segunda camada (textura pesada) a composição granulométrica está assim constituída; areia 27%, silte 31% e argila 42%.

A densidade aparente é média em torno de 1,49.

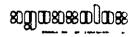
A capacidade de campo ou seja a umidade a 1/3 atm possui valor de 34%.

A umidade a 15 atm. é média por volta de 14%.

A agua util possui média de 20%.

Síntese das Propriedades Químicas:

Na camada de textura média pesada, a soma de bases (S), possui valores extremos variando entre 16,39 a 27,29 mEq/100g de solos, com média girando em torno de 22,00 mEq/100g de solo. A capacidade de troca de cátions (T), possui valores limites de 18,43 a 27,28 mEq/100g de solo, com valor médio de 24,00 mEq/100g de solo. A saturação de bases (V) varia de 89 a 100%, com média de 93%.


Na segunda camada de textura pesada, devido a ausên - cia de hidrogênio e aluminio os valores S e T são iguais, em torno de 30,72 mEq/100g de solo, o que implica numa saturação de bases de 100%.

Em superfície, a matéria orgânica é 1,36.

A condutividade elétrica na primeira camada varia de 1,26 a 5,30 mmhos/cm, apresentando portanto esta unidade ligei ros problemas de salinidade. Nesta camada, observa-se uma elevada concentração de sódio intercambial, chegando o valor do PSI a 61,58%, o que é considerado como fortemente salino.

Na segunda camada, a condutividade elétrica é de 5,40 mmhos/cm (salino).

Com relação ao PSI, o valor encontrado foi de 50,81%, o que é classificado como fortemente alcalino.

Classe de Terra para Irrigação: $\frac{3sd}{L22By}$ a2

Fatores Condicionantes da Classe de Terra para Irrigação:

A alcalinidade e a salinidade, além de drenagem moderada.

Medidas para Melhoramento da Classe de Terra para Irrigação

Consistiriam na aplicação de gesso e posterior lavagem do solo. Para tanto, teria de ser feito um bom sistema de drenagem.

Os fertilizantes a serem usados devem ter reação ácida, serem ricos em cálcio e apresentarem índices baixos de salinidade e alcalinidade.

Fertilidade:

Apesar de apresentarem boa quantidade de elementos minerais, boa capacidade de troca de cátions e elevada saturação de bases, devido aos índices elevados de sódio trocavel no complexo saltivo e de condutividade elétrica, podemos considerálo de baixa fertilidade.

Recomendações Sobre o Uso Agricola:

A mecanização agrícola pode ser feita sem restrições.

As adubações devem ser orgâno-minerais, sendo que os fertilizantes minerais devem se enquadrar nas condições propostas no item Medidas..... para Irrigação

A drenagem deve ser feita, inclusive com drenos subterrâneos se se pretende corrigir o solo.

Nas condições atuais apenas sugerimos o plantio da cultura do arroz.

UNIDADE: Ae, 1

Classificação: Aluvião eutrófico de textura pesada, moderadamente drenado.

Representação Cartográfica: Ae P mod

Perfil Representativo: 09

Área da Unidade: 15,12 ha

Percentual da Área da Unidade: 0,91%

Drenagem Interna: Moderadamente drenado

Síntese das Características Morfológicas: É de aproximadamente 160 cm a espessura da camada que representa o perfil. A coloração varia de bruno escuro a bruno avermelhado escuro. A porosidade constituí-se de poros comuns mui to pequenos e pequenos. A transição entre sub-camadas decorre de maneira clara e plana.

Síntese das Propriedades Físicas: A composição granulométrica para a fração areia apresenta valores extremos de 16 e 26% com média de 22%; para o silte, observa-se como limite máximo 38%, mínimo 31% e a média é 34%; com relação a argila, a média é 44% com extremos de 46 e 42%.

A densidade aparente é média em torno de 1,59.

A umidade a 1/3 atm. e a 15 atm. possuem valores médios respectivos de 34% e 13%. A água útil tem média girando em torno de 21%.

Síntese das Propriedades Químicas: Com relação aos dados químicos, observa-se que a soma de bases trocáveis (S), varia de 24,10 a 20,87 mEq/100g de solo, com média em torno de 22,81 mEq/100g de solo. Para a capacidade de troca de cátions, observa-se, como média o valor de

24,98 mEq/100g de solo, sendo 26,33 mEq/100g de solo o valor máximo e 22,58 mEq/100g de solo o valor míni-

A saturação da bases é média por volta de 94%.

A matéria orgânica entre 0 - 33 cm, encontra-se com valor de 1,85%.

0 pH, varia de 5,5 a 5,8.

Os resultados do PSI e condutividade elétrica revelaram ausência de sais solúveis no perfil do solo.

Fatores Condicionantes da Classe de Terra para Irrigação:

São eles: a textura pesada, a pequena permeabilidade, a drenagem moderada e o risco de inundação temporário na época invernosa.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Introdução na área de um sistema de drenagem superficial. Utilização de adubos orgânicos ou verdes e o emprego de fertilizantes químicos deve ser controlado a fim de evitar- se problemas futuros de salinidade.

Fertilidade:

A fertilidade pode ser considerada alta posto que, o solo dispõe de boa quantidade de elementos minerais disponível às culturas; tem saturação de bases alta; a capacidade de troca de cátions é alta; o teor de matéria orgânica é bom; não apresenta quantidades de sódio trocáveis em níveis prejudiciais, a condutividade elétrica é baixa; apenas o pH é um tanto ácido.

Recomendações Sobre o Uso Agricola

A mecanização agrícola pode ser feita sem restrições, desde que o solo seja trabalho com baixos percentuais de umida de.

A area deste solo receberia muito bem um sistema de dremagem superficial.

As adubações mistas (orgâno-minerais) são as mais recomendáveis não số para a fertilização do solo como também para a melhoria da permeabilidade, drenagem, estruturação e aera
ção do mesmo.

0 pH acido pode ser corrigido com calagem ou mesmo per lo emprego de fertilizantes minerais ricos em calcio.

Dado a condição de solo pesado, as culturas mais recomendáveis seriam o arroz, a cana, os capins, o algodão. Também podem ser empregados as culturas de milho, sorgo e banana se não há inundação na área.

UNIDADE: Ae

Classificação: Aluvião eutrófico de textura pesada, mal drenado.

Representação Cartográfica: Ae P md

Perfil Representativo: 20

Ārea da Unidade: 68,75 ha

Percentual da Área da Unidade: 4,12%

Drenagem Interna. Mal drenado

Síntese das Características Morfológicas: A espessura da camada que compõe o perfil, é de aproximadamente 140 cm+; a textura é argilosa.

Síntese das Propriedades Físicas: Através da análise granulomé trica, observa-se a participação das frações areia, silte e argila com as seguintes médias: 20%, 34% e 46%. A umidade a 1/3 atm em média é 37%; a média do ponto de murchamento gira em torno de 16% e a água útil é 26%.

Síntese das Propriedades Químicas: A média da soma de bases (S) gira em torno de 50,23 mEq/100g de solo. Devido a ausência de alumínio trocável a capacidade de troca de cátions é igual a soma de bases. Isto implica em que a saturação de bases é 100%.

A matéria orgânica em superfície apresenta valor de 1,64%.

A condutividade elétrica apresenta baixos valores, não havendo portanto problema de sais na unidade.

Com relação ao PSI, os dados analíticos também mostram que não existe concentrações de sódio que prejudiquem o

bom desenvolvimento das culturas.

Classe de Terra para Irrigação: 4sd f2 L22BZ

Fatores Condicionantes da Classe de Terra para Irrigação:

São eles: a textura pesada, a baixa permeabilidade e principalmente a drenagem, afora o risco de inundação.

Medidas para Melhoramento da Classe de Terra para Irrigação:

A principal seria a regularização do dreno natural que passa pelo centro da área desta unidade de solo. O uso de adubos orgânicos também seria uma boa prática para aumentar a permeabilidade do solo e sua aeração.

Fertilidade:

A fertilidade é bastante alta. O solo possui uma grande quantidade de elementos minerais disponíveis para as culturas; a soma de base e a capacidade de troca de cátions são altos, assim como a saturação de bases; os teores de matéria orgânica são bons; não existe alcalinidade e nem salinidade; apenas o pH é ligeiramente alcalino, quase neutro.

Recomendações Sobre o Uso Agricola:

A mecanização agrícola não teria qualquer limitação, desde que, seja resolvido o problema de drenagem.

As adubações devem ser orgâno-minerais.

O método de irrigação melhor aplicável seria o gravitário, embora os métodos por aspersão e canhão possam ser utilizados sem prejuízos.

As culturas de melhor comportamento seriam o arroz, a cana e os capins.

UNIDADE: Ae

Classificação: Aluvião eutrófico de textura pesada, fortemente alcalino e salino a partir de pouca profundidade, imperfeitamente drenado.

Representação Cartográfica: Ae P id

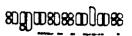
Perfil Representativo: 10

Área da Unidade: 60,00 ha

Percentual da Área da Unidade: 3,59%

Drenagem Interna: Imperfeitamente drenado

Sintese das Características Morfológicas: A espessura da camada é de 130 cm+. As colorações das sub-camadas variam entre bruno avermelhado escuro a bruno acinzentado muito escuro. A porosidade, é composta de poros comuns muito pequenos e pequenos. A textura de todo o perfil é argilosa. As transições entre sub-camadas se faz de maneira clara e plana.


Síntese das Propriedades Físicas: Na composição granulométrica, a areia participa com média de 22% e valores extremos de 24 e 20%; o silte apresenta média de 33% e valores máximo e mínimo de 34 e 31% respectivamente; a argila possui como limites 48 e 43%, sendo a média de 45%.

Com relação a densidade aparente, o valor médio encontra-se em torno de 1,64, com variações entre 1,61 e 1,67.

A capacidade de campo varia de 31% a 37%, com teor m $\underline{\tilde{e}}$ dio de 33%.

O ponto de murchamento tem uma percentagem média de 14,5%, com limite inferior de 14% e limite superior de 15%.

A agua útil apresenta valores de 17% e 25%, tendo como valor intermediário 20%.

Síntese das Propriedades Químicas:

A soma de bases trocaveis apresenta-se com variações entre 23,92 e 43,29 mEq/100g de solo, sendo que a média encontra-se em torno de 34,53 mEq/100g de solo. A capacidade de troca de cátions (T), possuí como valor central 35,42mEq/100g de solo e os valores extremos são 25,33 e 44,55 mEq/100 de solo. A saturação de bases (V) é média em torno de 97%.

A matéria orgânica em superfície apresenta valor de 1,36%.

0 pH, nesta unidade, cresce com a profundidade, sendo o valor na la. sub-camada de 5,9 e na última 7,9%.

A partir de 27 cm de profundidade, estes solos apresentam-se com concentração salina, com valor da condutividade elétrica variando de 7,70 a 7,0mmhos/cm.

O percentual de sódio intercambial, apresenta-se com 14,13% na superfície, atingindo 52,91% na última sub-camada. Portanto, ocorre uma grande concentração de sódio trocável no complexo de troca.

Classe de Terra para Irrigação: 4sd L22BZ

Fatores Condicionantes da Classe de Terra para Irrigação:

A textura pesada; a forte alcalinidade; a salinidade; a baixa permeabilidade; a drenagem imperfeita e o risco de inundação.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Dotar a área de um sistema de drenagem subterrânea . Aplicar gesso e fazer lavagem do solo. Usar fertilizantes orgânicos e adubos minerais de reação ácida e ricos em cálcio.

Fertilidade:

A fertilidade não é considerada boa devido a existência de forte alcalinidade e salinidade. Os demais itens que compõem a fertilidade são considerados bons ou satisfatórios. Isto é, se corrigido o problema da alcalinidade - salinidade teríamos um solo de elevada fertilidade.

Recomendações Sobre o Uso Agrícola:

Não se recomenda a mecanização agrícola de preparo do solo, para que não se traga ainda para mais próximo da superfície materiais mais concentrados ainda de sais indesejáveis. A mecanização só seria recomendável, na forma de sub-solagens, se se decidir pela correção do solo.

As adubações devem receber adubos orgânicos para a melhoria das condições físicas do solo e em consequência, da drenagem e permeabilidade. Os adubos minerais devem dispor de muito câlcio e apresentarem reação ácida.

O método de irrigação deve ser gravitário.

A cultura mais indicada é o arroz. Resolvido o probl<u>e</u> ma de sais pode-se plantar a cana, os capins, o algodão, o so<u>r</u> go e o milho. Por enquanto não tentar outra cultura senão o arroz.

UNIDADE: Ae14

Classificação: Aluvião eutrófico de textura pesada, fortemente alcalino e salino a média profundidade, forte - mente alcalino em profundidade, imperfeitamente drenado.

Representação Cartográfica: Ae P id fas2fa3

Perfil Representativo: 11

Área da Unidade: 77,00 ha

Percentual da Area da Unidade: 4,61%

Drenagem Interna: Imperfeitamente drenado

Síntese das Características Morfológicas: A espessura da camada é de aproximadamente 132 cm+; a coloração varia en tre bruno acinzentado muito escuro a bruno avermelhado escuro. Nas últimas sub-camadas, observa-se, a presença de mosqueado abundante pequeno difuso de vermelho amarelado. A porosidade está constituída de poucos poros muito pequenos e pequenos. As transições en tre as diversas sub-camadas ocorre de maneira clara e plana.

Síntese das Propriedades Físicas: A camada, apresenta a seguin te composição granulométrica média; areia 19%; silte 33% e argila 48%.

A densidade aparente varia de 1,29 a 1,51 com média de 1,41.

A capacidade de campo oscila de 39 a 36%, com média de 37%.

O ponto de murchamento tem média de 14% e valores extremos 17 e 12%. A agua util apresenta valores limites de 24 e 22%, se $\underline{\mathbf{n}}$ do a média 23%.

Síntese das Propriedades Químicas:

Com relação aos dados químicos, constata-se que o valor "S" ou seja a soma de bases, possui média girando em torno de 36,00 mEq/100g de solo e valores máximo e mínimo de 41,08 e 27,07 mEq/100g de solo. A capacidade de cátions trocáveis (T) tem como média 38,14 mEq/100g de solo e seus valores limites variam entre 28,21 e 43,27 mEq/100g de solo. A média da satura ção de bases é 95% e os valores extremos 96 e 94%.

A matéria orgânica na superfície apresenta-se com valor de 1,39%.

0 pH varia de 6,4 a 4,9.

A condutividade elétrica na segunda sub-camada (44-82 cm), possui valor de 5,70 mmhos/cm o que torna a unidade nesta profundidade, ser classificada como salina.

O PSI até a profundidade de 44 cm é desprezivel, entretanto a partir daí, revela valores muito altos, chegando a alcançar 44,81%, o que convenhamos, é altamente prejudicial às culturas.

Fatores Condicionantes da Classe de Terra para Irrigação:

São eles: a textura pesada, a forte alcalinidade a s \underline{a} linidade, a baixa permeabilidade e a drenagem imperfeita.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Dotar a área de um sistema de drenagem subterrânea in clusive, e, posteriormente aplicar gesso e submeter o solo a um processo de lavagem programado.

Melhorar as condições de permeabilidade, também, com o uso de adubos orgânicos. Ao usar fertilizantes, escolher aque les de reação ácida e ricos em cálcio.

O método de irrigação deve ser o gravitário, para promover a lavagem dos sais.

Fertilidade:

Não é alta devido a alcalinidade e salinidade presentes em doses elevadas. Contornado este problema, poderiamos di zer que o solo seria de boa fertilidade.

Recomendações Sobre o Uso Agricola:

Próprio a cultura do arroz. Outras culturas como a cana e os capins podem ser tentados.

UNIDADE: Ae

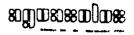
Classificação: Aluvião eutrófico, de textura pesada, fortemente alcalino e salino a média profundidade, fortemente alcalino e ligeiramente salino a partir de profundo, moderadamente drenado.

Representação Cartográfica: Ae P mod fas2fals3+

Perfil Representativo: 08

Area da Unidade: 138,75 ha

Percentual da Area da Unidade: 8,31%


Drenagem Interna: Imperfeitamente drenado

Síntese das Características Morfológicas: A espessura da camada é de 170 cm; sua coloração varia de bruno acinzentado muito escuro a bruno avermelhado escuro, sendo
que nas duas últimas sub-camadas verifica-se a presen
ça de mosqueado variando de bruno forte a vermelho
amarelado. A textura é argilosa em todas as sub-camadas.

Síntese das Propriedades Físicas: A composição granulométrica para a fração areia, revela em média 25% sendo que os valores extremos são 34% e 18%, o silte possui valores limites de 26 e 35%, sendo a média 31%; a argila apresenta média em torno de 44% com valores máximo e mínimo de 40 e 48%.

A densidade aparente tem média por volta de 1,69.

Nas constantes hídricas, observa-se, valores médios de 35%, 16% e 19% respectivamente para capacidade de campo, ponto de murchamento e água útil.

Síntese das Propriedades Químicas:

Com relação a soma de cátions trocáveis a média gira em torno de 27,28 mEq/100g de solo. A capacidade de troca de cátions possui média aproximada de 29,14 mEq/100g de solo e a saturação de bases é média por volta de 96%.

A matéria orgânica em superfície é 1,68%.

O pH decresce com a profundidade, sendo na primeira sub-camada 6,9 e na última 5,7.

A condutividade elétrica a partir de 32 cm de profundidade apresenta-se com valor de 4,70 mmhos/cm, e também decresce com a profundidade. O teor salino na unidade não é motivo de preocupação.

Com exceção da primeira sub-camada, todas as outras apresentam níveis elevados de sódio trocável, chegando o valor do mesmo a alcançar 42,85%. Com essa concentração de sódio, torna-se necessário o emprego de medidas corretivas visando um melhor aproveitamentos dos solos da unidade.

Classe de Terra para Irrigação: $\frac{4sd}{L22BZ}$ f2a2


Fatores Condicionantes da Classe de Terra para Irrigação:

A textura pesada. Os elevados níveis de alcalinidade e salinidade. A drenagem impedida. A baixa permeabilidade e o rísco de inundação temporária.

Medidas para Melhoramento da Classe de Terra para Irrigação:

As medidas mais corretas seriam a implantação de um sistema de drenagem subterrânea, o emprego de gesso e a posterior lavagem do solo. Estas medidas são de difícil aplicação, custo elevado e resultado demorado.

Na impossibilidade de aplicação das práticas acima de ve-se empregar fertilizantes de reação ácida (radical SO₄)

ricos em cálcio. O cálcio deverá liberar o sódio da micela de argila que reagindo com o radical SO₄ formará o sulfato de sódio que é um sal solúvel de fácil remoção do solo por lavagem.

O uso de adubos orgânicos ou verdes ajudam nos aume \underline{n} to da permeabilidade do solo.

Fertilidade:

Está comprometida pela presença de álcalis e sais solúveis.

Recomendações Sobre o Uso Agricola:

A mecanização agrícola de preparo do solo deve ser feita antes de o mesmo alcançar teores elevados de umidade.

As adubações devem ser muito bem planejadas e os seus resultados acompanhados sistematicamente.

O método de irrigação deve ser gravitário para permitir a lavagem do solo.

Aptidão cultural ideal para o arroz.

UNIDADE: PE

Classificação: Podzólico vermelho amarelo equivalente eutrófico plinthico abruptico, A fraco textura média, caatinga arbórea arbustiva, relevo suave ondula do, imperfeitamente drenado.

Representação Cartográfica: PE

Perfil Representativo: 15

Área da Unidade: 88,20 ha

Percentual da Área da Unidade: 5,28%

Drenagem Interna: Imperfeitamente drenado.

Síntese das Características Morfológicas: A espessura do A₁ é de aproximadamente 34 cm. A coloração é bruno; a textura é franco argilo arenoso a porosidade é constituí da de muitos poros muito pequenos e médios. A transição do A para B se faz de maneira abrupta e plana.

A espessura do "B" é igual ou superior a 91 cm. Este horizonte se subdivide em B_1 , B_2 e B_3 , com coloração variando de bruno amarelado escuro a cinzento claro. Em todos os sub-horizontes ocorre o aparecimento de mosqueado. A textura do B_1 e B_3 é franco argilo arenoso e do B_2 é franco argiloso.

Síntese das Propriedades Físicas: O horizonte "A" apresenta a seguinte composição granulométrica: areia 61%, silte 18% e argila 21%.

A densidade aparente possui valor de 1,67.

A umidade a 1/3 atm é 14%, o ponto de murchamento 6% e a água útil 8%.

No horizonte "B" a composição granulométrica apresenta os seguintes percentuais médios: areia 43%, silte 25% e argila 32%.

Com relação a densidade aparente, a media do horizonte "B" é próxima a 1,77, a umidade a 1/3 atm é media a 24%, en quanto que a umidade a 15 atm e a agua útil possuem medias res pectivas de 10% e 14%.

Síntese das Propriedades Químicas:

A soma de bases (S), apresenta para o horizonte "A" valor de 7,37 mEq/100g de solo, enquanto que a capacidade de permuta de cátions é 11,01 mEq/100g de solo. A saturação de bases (V) possui valor de 67%.

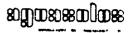
No horizonte "B" a média da soma de bases (S), e a capacidade de troca de cátions apresentam valores respectivos de 17,76 e 20,26 mEq/100g de solo, enquanto que a saturação de bases (V), tem percentuais médios de 85%.

A materia orgânica é baixa em todo perfil, alcançando valor máximo no "A" com 0,80%.

O pH é ligeiramente ácido, variando entre 5,1 a 6,1.

Classe de Terra para Irrigação: 2sdt L22By

Fatores Condicionantes da Classe de Terra para Irrigação:


A drenagem imperfeita, a baixa fertilidade acidez e algumas pedras em superfície.

Medidas para Melhoramento de Classe de Terra para Irrigação:

Estas medidas constam da correção do pH através de ca lagem e adubações orgâno-minerais.

Fertilidade:

A média, ja que dispoe de razoaveis quantidades de nu trientes, apresenta boa capacidade de troca de cations, elevada soma de bases, pH acido, baixo teor de materia orgânica, bai

xo percentual de sódio trocavel no complexo de troca e, sem sa linidade.

Recomendações Sobre o Uso Agricola:

A mecanização agrícola deve ser vista com restrições posto que, há riscos de erosão sérios pois a camada superficial repousa sobre uma camada completa e impermeável. A água ao penetrar no solo sofre retração em sua velocidade de infiltração sa turando em consequência a camada superior. Esta camada estando mecanizada, com a declividade e a saturação com água, fica sujeita ao escorrimento superficial.

O solo exige calagem com calcareo dolomitico.

As adubações devem ser mistas orgâno-minerais. O fertilizante orgânico tem a função de estruturar o solo e aumentar sua capacidade de retenção de unidade em superfície e, favorecer o melhor aproveitamento do fertilizante mineral.

O método de irrigação deve ser o da aspersão ou similares.

O solo se presta para algumas fruteiras, capins, cana, milho, algodão, sorgo, etc.

UNIDADE: V1

Classificação: Vertisol A moderado, textura media/pesada caatinga arborea arbustiva relevo suave ondulado.

Representação Cartográfica: Vl

Perfil Representativo: 16

Ārea da Unidade: 47,50 ha

Percentual da Area da Unidade: 2,85%

Drenagem Interna: Moderadamente drenado

Síntese das Características Morfológicas: A espessura do horizonte A₁ é 16 cm; a coloração é bruno acinzentado muito escuro; a textura apresenta-se como franco argilo arenoso, a porosidade é constituída de muitos poros muito pequenos e pequenos. A transição para a C₂ decorre de maneira clara e plana.

Com relação aos horizontes C_2 e C_3 , observa-se que a espessura dos mesmos é de aproximadamente 104 cm; as colora - ções variam de cinzento muito escuro a preto; a textura aumenta de franco argiloso no C_2 para argila no C_3 .

Síntese das Propriedades Físicas: A análise granulométrica no horizonte superficial apresenta os seguintes teores: areia 54%, silte 25% e argila 21%. A densidade aparente é 1,76. As constantes hídricas possuem os seguintes valores: capacidade de campo 13%, ponto de murchamento 5% e água útil 8%.

Nos horizontes subsequentes, observa-se em média os seguintes percentuais para a areia, silte e argila: 31% 31% e 38%.

A densidade aparente é média em torno de 1,73. A capacidade de campo, o ponto de murchamento e a água útil pos-

sui respectivamente as seguintes médias: 27%, 12% e 15%.

Síntese das Propriedades Químicas:

A soma de bases no horizonte superficial é de 11,85 mEq/100g de solo; a caracidade de troca de cations é 12,87 mEq/100g de solo; a saturação de bases é 92%.

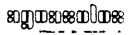
No horizonte subsequente devido a ausência de alumínio os valores "S" e "T" são iguais, tendo média em torno de 30,72 mEq/100g de solo. Este fato implica em que a saturação de bases é 100%.

A matéria orgânica na A₁ é 1,65%.

0 pH em todo perfil varia de 6,1 a 8,1.

Classe de Terra para Irrigação: 3sdt 122By

Fatores Condicionantes da Classe de Terra para Irrigação:


A baixa permeabilidade, a drenagem, alguma pedregos $\underline{\mathbf{i}}$ dade e a topografia.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Consistem apenas naquelas medidas que visam melhorar as condições de permeabilidade do solo, no caso adubações orgânicas. Os outros fatores limitantes em pouco podem ser ajudados no sentido de se reduzir suas limitações. A topografia não pode ser alterada assim recomenda-se que a exploração da área obedeça a algum princípio de conservação, sugerindo - se para o caso, práticas negativas como capínas alternadas e/ou cordões de contorno, além do plantio em curvas de níveis. Deve-se evitar a mecanização agrícola.

Fertilidade:

É alta em todos os sentidos.

Recomendações Sobre o Uso Agricola:

A mecanização agrícola não deve ser feita.

As adubações são recomendadas apenas para reposição dos elementos minerais retirados pelas culturas.

A irrigação deve ser por arpersão ou metodos similares.

O solo se adapta à algumas culturas frutíferas como a banana, alguns citrus, etc. É bom para culturas como o milho e o sorgo. É excelente para as culturas de algodão e arroz.

UNIDADE: V2

Classificação: Vertisol A moderado, textura argilosa caatinga arborea arbustiva relevo suave ondulado.

Representação Cartográfica: V2

Perfil Representativo: 17, 18 e 19

Area da Unidade: 302,25 ha

Percentual da Area da Unidade: 18,11%

Drenagem Interna: Imperfeitamente drenado

Síntese das Características Morfológicas: A espessura do horizonte "A" varia de 22 a 30 cm; predomina a coloração bruno avermelhado escuro,; a porosidade é composta de poros comuns muito pequenos e pequenos; a transição para o horizonte subsequente varia de gradual e clara.

O horizonte "C", possui em média 145 cm de espessura; as colorações variam de vermelho escuro a vermelho acinzentado; a textura de todos os sub-horizontes é argilosa; a porosidade via de regra é composta de poros comuns muito pequenos e pequenos.

Síntese das Propriedades Físicas: A análise granulometrica revelou para o horizonte "A" os seguintes percentuais médios: areia 34%, silte 27% e argila 39%. Com relação as constantes hídricas, observa-se que em média os valores de capacidade de campo, ponto de murchamento e água útil são os seguintes: 32%, 12% e 20%. A densida de aparente é 1,47.

Para o horizonte "C", os percentuais médios da granulométria é a seguinte: areia, 23%, silte 31% e argila 46%. A densidade aparente possui média girando em torno de 1,60. A ca pacidade de campo é média por volta de 35%, o ponto de murcha-

mento apresenta em média 14% e a agua útil possui média girando em torno de 21%.

Síntese das Propriedades Químicas:

Tanto no horizonte "A" como no horizonte "B", verifi-se a ausência de alumínio trocável. Este fato implica em que
os valores da soma de bases e da capacidade de troca de cátions
são idênticos. No horizonte "A" o valor "S" = "T" em média é
52,09 mEq/100g de solo, enquanto que no horizonte "B" o valor
médio é 52,52 mEq/100g de solo. Em todos os horizontes o índice de saturação de bases é 100%.

A matéria orgânica em superfície varia de 0,83 al,82%.

0 pH da unidade varia de neutro a ligeiramente alcal \underline{i} no.

Classe de Terra para Irrigação: 3sdt L22bY

Fatores Condicionantes da Classe de Terra para Irrigação:

A textura argilosa, a baixa permeabilidade e a drenagem imperfeita.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Se resumem praticamente na melhoria das condições mor fológicas e físicas do solo, com vistas a aumentar a estrutura ção, a aeração e em consequência a permeabilidade, com o empre go de adubos orgânicos.

Como medida preventiva, as adubações minerais devem ser muito bem programadas e acompanhado seus resultados, de modo a que estas não venham a provocar problemas futuros de salinidade.

Fertilidade:

Alta em todos os sentidos.

Recomendações Sobre o Uso Agricola:

A mecanização agrícola só deve ser feita com o solo pouco úmido e de ser procedida no sentido contrário do declive. Os plantios devem ser em curvas de níveis.

As adubações são necessárias apenas para reposição dos elementos minerais retirados pelas culturas. É conveniente que as fórmulas apresentem fertilizantes orgânicos nas mesmas, para a melhoria das condições morfológicas e físicas do solo.

As culturas mais recomendáveis são o algodão, milho, o sorgo e o arroz.

UNIDADE: AQd1

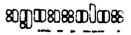
Classificação: Areía quartzosa eutrófica A fraco fase caatinga arbórea arbustiva relevo suave ondulado.

Representação Cartográfica: AQd₁

Perfil Representativo: 21

Area da Unidade: 132,85 ha

Percentual da Area da Unidade: 7,96%


Drenagem Interna: Moderadamente drenado

Síntese das Características Morfolóficas: A espessura do horizonte "A" é de aproximadamente 100 cm+; a coloração varia de bruno a bruno acinzentado; a transição entre sub-horizontes ocorre de maneira clara e plana; a textura é areia.

No horizonte "C", a espessura é de 50 cm; a coloração é bruno e observa-se a presença de masqueado; a classe textu - ral é areia; a porosidade é composta de poros comuns muito pequenos e pequenos.

Síntese das Propriedades Físicas: Através de análise granulome trica, observa-se que a média da fração areia é 92% do silte é 3% e da argila 5%. A densidade aparente é média por volta de 1,65. A umidade a 1/3 atm possui média em torno de 5%; a umidade a 15 atm possui valor médio de 2%; a água útil é média com valor de 3%.

A granulométria do horizonte "C" apresenta os seguintes resultados: areia 89%, silte 4% e argila 7%. A densidade aparente é 1,77. As constantes hídricas possuem os valores a seguir: capacidade de campo 7%; ponto de murchamento 3% e água útil 4%.

Síntese das Propriedades Químicas:

A soma de bases trocáveis, ou seja o valor "S", possui no horizonte "A" valores limites de 2,13 e 0,67 mEq/100g de solo, com média de 1,40 mEq/100g de solo. A capacidade de troca de cátions ("T") varia de 2,95 a 1,39 mEq/100g de solo, com média girando em torno de 2,17 mEq/100g de solo. O índice de saturação de bases é médio por volta de 60%.

Com relação ao horizonte "C", verifica-se que a soma de bases possui valor de 0,97 mEq/100g de solo, enquanto que a capacidade de troca de cátions é 1,85 mEq/100g de solo. O valor da saturação de bases é 52%.

0 pH no sub-horizonte \mathbf{A}_{11} apresenta-se com valor de 6.6.

A matéria orgânica em superfície é 0,53%.

Fatores Condicionantes da Classe de Terra para Irrigação:

São eles: A textura arenosa, a baixa fertilidade, a elevada permeabilidade e a drenagem moderada devido a elevação do lençol freático no período invernoso.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Consistem em evitar-se a elevação do lençol freático mediante a regularização de um riacho que passa próximo a área desta unidade, fazer a calagem do solo; aplicar fertilizantes orgânicos para aumentar a estruturação do solo, a capacidade de retenção de umidade e a capacidade troca de cátions; usar fertilizantes químicos ricos em cálcio e enxofre e que não a - presentem reação ácida.

Fertilidade:

Balxa sob todos os aspectos.

Recomendações Sobre o Uso Agricola:

A mecanização agrícola pode ser procedida sem qualquer restrição, no entanto simples gradagens são suficientes para o preparo do solo.

As adubações devem ser mistas. O adubo orgânico não pode ser esquecido devido a enorme importância que o mesmo vai exercer sobre as propriedades morfológicas, físicas e químicas do solo.

O método de irrigação deve ser o de aspersão ou similares (canhão, jato-pulsante, micro-aspersão e gotejamento).

A aptidão cultural destas areias é relativamente vasta indo desde a ferticultura, hortaliças, cana, capim, feijão, etc.

UNIDADE: AQd2

Classificação: Areia quartzosa eutrófica A fraco fase caatinga arbustica relevo suave ondulado.

Representação Cartográfica: AQd₂

Perfil Representativo: 22

Ārea da Unidade: 45,50 ha

Percentual da Area da Unidade: 2,73%

Drenagem Interna: Bem drenado

Síntese das Características Morfológicas: É de aproximadamente 110 cm a espessura do horizonte "A", o qual é sub-dividido em A₁₁ e A₁₂; suas colorações variam de bruno a bruno acinzentado, a textura é areia franca; a poro sidade é constituída de muitos poros muito pequenos e pequenos e comuns médios; a transição entre sub-horizontes é clara e plana.

O horizonte C_1 apresenta-se com 90 cm+; de espessura; a coloração é cinzento brunado claro e verifica-se a presença de moesqueado; a textura é areia franca a qual apresenta poros comuns muito pequenos e pequenos.

Síntese das Propriedades Físicas: A análise granulométrica revelou para o horizonte "A" a seguinte participação média para as frações areia, silte e argila: 87%, 5% e 8% respectivamente. A densidade aparente apresente valores limites de 1,50 e 1,38, com média de 1,44. A capacidade de campo,o ponto de murchamento e a água útil apresentam respectivamente os seguintes valores médios: 7%, 3% e 4%.

No horizonte C₁, a areia participa na composição granulométrica com 88%, o silte com 4% e a argila com 8%. A dens<u>i</u> dade aparente apresenta valor de 1,01. O ponto de murchamento e 6%, a capacidade de campo 3% e a água útil 3%. Síntese das Propriedades Químicas:

A soma de bases na horizonte A é médio por volta de 1,54 mEq/100g de solo, enquanto que a média da capacidade de troca de cátions é 2,57 mEq/100g de solo. O valor V (saturação de bases) é médio em torno de 60%.

No horizonte C_1 , observa-se que a média da soma de c \underline{a} tions trocaveis é 0,96 mEq/100g de solo e a CTC possui valor de 1,62 mEq/100g de solo. O índice de saturação de bases é de 59%.

O pH em toda a unidade varia de 6,1 a 5,9, portanto ligeiramente ácido.

A matéria orgânica na superfície é encontrada com valor de 0,56%.

Fatores Condicionantes da Classe de Terra para Irrigação:

São eles: a textura arenosa, a baixa fertilidade e a pequena capacidade de retenção de umidade.

Medidas para Melhoramento da Classe de Terra para Irrigação:

Estas medidas se resumem no aumento da fertilidade após a prévia correção da acidez do solo, com calcário dolomítico. A adubação deve ser mista, visando a que o fertilizante orgânico, aumenta a capacidade de retenção de umidade do solo bem como, a capacidade de troca de cátions do mesmo, e em consequência melhor aproveitamento dos fertilizantes minerais. Os adubos minerais devem ser ricos em cálcio e enxofre e não apresentarem reação ácida.

Fertilidade:

Baixa

Recomendações Sobre o Uso Agricola:

A mecanização agrícola pode ser feita sem nenhuma limitação, muito embora, simples gradagens sejam suficientes para o preparo do solo.

As adubações devem ser orgâno-minerais.

O solo não comporta irrigação por método gravitário, portanto a aspersão, micro-aspersão, canhão, pivô central, jato-pulsante e gotejamento podem ser feitos sem receios.

As culturas de hortaliças, fruteiras, cana, capim, fei jão, mandioca, melão, etc, se adaptam bem neste solo.

5.5 - Descrição dos Perfis

PROJETO: Vale dos Carás

PERFIL: NO 01

CLASSIFICAÇÃO: Aluvião eutrófico de textura média, imperfeitamente drenado.

LOCALIZAÇÃO: Estado do Ceará município de Juazeiro do Norte - Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com aproximadamente 1,0% de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos - Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Imperfeitamente drenado.

VEGETAÇÃO: LOCAL: Capim pe de galinha, vassourinha.

USO ATUAL: Algodão e arroz

- Ap 0 27cm; cinzento muito escuro (10YR 3/1, úmido); franco argilo arenoso moderada pequena e média blocos subangulares; muitos poros muito pequenos e pequenos; friável ligeiramente plástico e ligeiramente pegajoso; transição clara e plana.
- IIC₁ 27 77cm; bruno acinzentado escuro (10YR 4/2, úmido); franco arenoso; fraca pequena e média blocos subangula res; muitos poros pequenos e médios; muito friável não plástico e não pegajoso; transição clara e plana.

- IIIC₂ 77-169cm+; bruno acinzentado muito escuro (10YR 3/2, úmido); franco arenoso; muito friável plástico e pegajoso.
- OBS: Devido ao alto grau de umidade do solo, não foi possível estudar todas as características morfológicas do perfíl.

PROJETO: Vale dos Carás

PERFIL: Nº 01C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico de textura média, imperfeitamente drenado.

LOCALIZAÇÃO: Estado do Ceará município de Juazeiro do Norte-Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com aproximadamente 1,5% de declivida-de.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentação argilo-arenoso - Ouartenário.

MATERIAL ORIGINÁRIO: Sedimentos argilo-arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Imperfertamente drenado.

VEVETAÇÃO: LOCAL: Capim pé de galinha, vassourinha, carrapicho.

USO ATUAL: Algodão e arroz

- Ap 0 25 cm; cinzento multo escuro (l0yr 3/1, úmido); franco argilo arenoso moderada pequena e média blocos subangulares; multos poros multo pequenos e pequenos; friá vel ligeiramente plástico e ligeiramente pegajoso; transição clara e plana.
- IIC₁- 25 80 cm; bruno acinzentado escuro (10yr 4/2, úmido); franco arenoso; fraca pequena e média blocos subangulares; muitos poros pequenos e médios; muito friável não plástico e não pegajoso; transição clara e plana.
- IIIC₂- 80 172 cm+; bruno acinzentado muito escuro (10YR 3/2, úmido); franco arenoso; muito friável plástico e pegajoso.
- OBS: Devido ao alto grau de umidade do solo, não foi possível estudar todas as características morfológicas do perfíl.

PROJETO: Vales dos Caras

PERFIL: NO 02

CLASSIFICAÇÃO: Aluvião eutrófico de textura media pesada/pesada

a partir de média profundidade, mal drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte.

Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com aproximadamente 2,0% de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos. Qua ternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Mal drenado

VEGETAÇÃO: LOCAL: Vassourinha, salsa, etc.

USO ATUAL: Cana

C₁ - 0-46cm; bruno acinzentado muito escuro (10YR 3/2, úmido); franco argiloso; plástico e pegajoso; transição gradual e plana.

IIC₂- 46-151cm+; bruno muito escuro (10YR 2/2, úmido); argila; plástico e pegajoso.

OBS: Trincheira alagada por ocasião da descrição.

PROJETO: Vale dos Carás

PERFÍL: Nº 02C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico de textura média/média pesada a pouca profundidade/pesada a partir de média profundidade salino a pouca profundidade, muito alcalino e ligeiramente salino a partir de média profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará. Muinicípio de Juazeiro do Norte Vide mapa de solos.

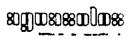
SITUAÇÃO E DECLIVIDADE: Trincheiras aberta em terreno aluvio - nal com declividade de 0 - 1,5%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentar argilo-arenosos. '
Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano


DRENAGEM: Moderadamente drenado

VEGETAÇÃO LOCAL: Junco, capim vela, etc.

USO ATUAL:

- Ap 0 17 cm; bruno (7,5YR 4/2, úmido); franco argilo arenoso; fraca pequena blocos subangulares; poros comuns pequenos; muito friável, ligeiramente plástico e ligeiramente pegajoso; transição clara e plana.
- IIC₁ 17 65 cm, bruno escuro (7,5YR 3/2, úmido); franco argiloso; moderada pequena blocos sub-angulares; pou cos poros muito pequenos e pequenos; friável, plástico e pegajoso; transição clara a plana.
- IIIC₂ 65 186 cm; bruno avermelhado escuro (5YR 3/2,úmido); argila; moderada pequena e média blocos sub-angulares; poros comuns muito pequenos; firme, muito plástico e muito pegajoso.

RAIZES: Poucas e finas em Ap; raras e finas em IIC₁.

PROJETO: Vale dos Carás

PERFIL: Nº 03

CLASSIFICAÇÃO: Aluvião eutrófico de textura média pesada/pesada a partir de profundo, fortemente alcalino e
ligeiramente salino a pouca profundidade, forte
mente alcalino e salino a partir de média profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com 1,0 a 2,0 de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos do Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO: LOCAL: Capim pé de galinha, feijão de rola, mata pasto.

USO ATUAL: Arroz e capim.

- Ap 0-26cm; bruno acínzentado muito escuro (10YR 3/2, úmido); franco argiloso; moderada média blocos subangulares; poros comuns, muito pequenos; friável, plástico e pegajoso; transição clara e plana.
- IIC₁ 26-66cm; bruno escuro (7,5YR 3/2, úmido); franco argilo so; moderada pequena e média blocos subangulares; poros comuns pequenos e muito pequenos; friável, plástico e pegajoso; transição gradual e plana.
- IIIC₂- 66-109cm; bruno escuro (7,5YR 3/2, úmido); mosqueado comum pequeno difuso de bruno (7,5YR 4/4, úmido) e cinza escuro (10YR 4/1, úmido); franco argiloso; fraca peque-

na e média blocos subangulares; poros comuns pequenos; friável, plástico e pegajoso; transição gradual e plana.

IVC₃ - 109-160cm+; bruno muito escuro (10YR 2/2, umido); mosqueado abundante pequeno difuso de bruno escuro (7,5 YR 3/2, umido); argila; moderada pequena e media blocos subangulares; poros comuns pequenos.

PROJETO: Vale dos Carás

PERFIL: Nº 03C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico de textura média/média pesada a pouca profundidade/pesada a partir de média profundidade salino a pouca profundidade, muito alcalino e ligerramente salino apartir de média profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará. Município de Juazeiro do Norte - Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terreno aluvional com declividade de 0 - 2,0%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo - arenosos .

Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo-arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO LOCAL: Capim vela, junco, pimenta de lagoa, etc.

USO ATUAL:

Ap - 0 - 18 cm; bruno (7,5YR 4/2, úmido); franco argilo arenoso; fraca pequena blocos subangulares; poros comuns pequenos; muito friável, ligeiramente plástico e ligeiramente pegajoso; transição clara e plana.

IIC₁ - 18 - 70 cm; bruno escuro (7,5YR 3/2, úmido); franco argıloso; moderada pequena blocos sub - angulares; poucos poros muito pequenos e pequenos; friável, plástico e pegajoso; transição clara e plana.

IIIC₂ - 70 - 170 cm; bruno avermelhado escuro (5YR 3/2,úmido); argila; moderada pequena e média blocos sub-angulares; poros comuns muito pequenaos; firme, muito plástico e

000000

muito pegajoso.

RAIZES: Poucas e finas em Ap; raras e finas em IIC₁.

PROJETO: Vale dos Carás

PERFIL: NO 04

CLASSIFICAÇÃO: Aluvião eutrófico de textura média/leve a par-

tir de média profundidade, bem drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte - Vide planta de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com declividade de 1 a 2,5%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenoso do quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Caras.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Sem drenado

VEGETAÇÃO: LOCAL: Jurema, capim pé de galinha.

USO ATUAL: Algodão

- Ap 0-44cm; bruno acinzentado escuro (10YR 4/2, úmido); franco arenoso; fraca pequena blocos sub-angulares; muitos poros muito pequenos e comuns pequenos; muito friável, ligeiramente plástico e ligeiramente pegajoso; transição abrupta e plana.
- IIC₁ 44-200cm+; amarelo (10YR 7/8, úmido); areia; grãos simples; muitos poros pequenos; solto, não plástico e não pegajoso.

OBS: Perfil úmido, na ocasião da descrição.

PROJETO: Vale dos Carás

PERFIL: Nº 04C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico de textura média pesada, fortemente alcalino e muito salino a pouca profundidade, fortemente alcalino a partir de média profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará. Município de Juazeriro do Norte .

Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvial com declividade de 0 - 2,0%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos. Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO LOCAL: melosa, capim vela, junco, etc.

USO ATUAL: Arroz

- Ap 0 22 cm; bruno escuro (10YR 4/3, úmido); franco argiloso; fraca pequena e média blocos sub-angulares; poros comus, muito pequenos; firme plástico e pegajoso; transição gradual e plana.
- IIC₁ 22 88 cm, bruno acinzentado muito escuro (10YR 3/2,ú-mido); franco argiloso; moderada pequena e média; blo cos sub-angulares; poucos poros muito pequeno; muito firme muito plástico e pegajoso; transição gradual e plana.
- IIIC₂- 88 140 cm; cinzento muito escuro (10YR 3/1, úmido); franco argiloso; plástico e pegajoso.

RAIZES: Poucas e finas em Ap

OBS: Lençol freático a 135cm, não foi possível tirar a estrutura

da 3a. camada pois a mesma encontrava-se c/grande teor de umi-

PROJETO: Vale dos Carás

PERFIL: Nº 05

CLASSIFICAÇÃO: Aluvião eutrófico de textura média pesada/pesada a partir de média profundidade, muito alcali
no e salino a partir de média profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com aproximdamente 2,0% de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos: do Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO: LOCAL: Jurema, Juazeiro, milhã, malva.

USO ATUAL:

- C₁ 0-35cm; bruno escuro (7,5YR 4/2, úmido); franco argiloso; moderada pequena blocos subangulares; poros comuns pequenos e muito pequenos; friável, muito plástico e muito pegajoso; transição clara e plana.
- IIC₂ 35-142cm; bruno (7,5YR 4/2, úmido); argila; forte pequena e média blocos subangulares; poros comuns muito pequenos; firme muito plástico e muito pegajoso; transição gradual e plana.
- IIIC₃- 142-200cm+; bruno escuro (7,5YR 3/2, úmido); argila; moderada pequena e média blocos subangulares; poros comuns muito pequenos e pequenos; friável, muito plástico e muito pegajoso.

PROJETO: Vale Carás

PERFIL: Nº 05 (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico de textura média pesada/pesada a partir de profundo, fortemente alcalino e li - geiramente salino a pouca profundidade, fortemente alcalino e salino a partir de média profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará. Município de Juazeiro do Norte .

Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com 1,0 a 2,0 de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo-arenosos do Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo-arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO: LOCAL: Capim pé de galinha, feijão de rola, mata pasto, turco, salça, etc.

USO ATUAL: Arroz

Ap - 0 - 30 cm; bruno acinzentado muito escuro (10YR 3/2 , úmido), franco argiloso; moderada média blocos subangulares; poros comuns, muito pequenos; friável, plástico e pegajoso; transição clara e plana.

IIIC₁ - 30 -70 cm; bruno escuro (7,5YR 3/2, úmido); franco arguloso; moderada pequena e média blocos sub-angulares; poros comuns pequenos e muito pequenos; friável, plástico e pegajoso; transição gradual e plana.

IIIC₁ - 70 - 120 cm; bruno escuro (7,5YR 3/2, úmido); mosqueado comum pequeno difuso de bruno (7,5YR 4/4, úmido) e cinza escuro (10YR 4/1, úmido); franco argiloso; fraca pe-

quena e média blocos sub-angulares; poros comuns peque nos; friável, plástico e pegajoso; transição gradual e
plana.

IVC₃ - 120 - 165 cm; bruno muito escuro (10YR 2/2, úmido); mosqueado abundante pequeno difuso de bruno escuro (7,5 YR
3/2, úmido): argıla; moderada pequena e média blocos sub
angulares; poros comuns pequenos.

103

PROJETO: Vale dos Carás

PERFIL: Nº 06

CLASSIFICAÇÃO: Aluvião eutrófico de textura média pesada/pesada a partir de pouca profundidade, fortemente alcalino e salino a partir de pouca profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional, com 1,0 a 2,0% de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos.Qua ternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO: LOCAL: Salsa, jurema, Juazeiro.

USO ATUAL:

- C₁ 0-29cm; bruno acinzentado muito escuro (7,5YR 3/2, úmido); franco argiloso; fraca pequena e média blocos subangulares; poros comuns muito pequenos; friavel, plastico e pegajoso; transição clara e plana.
- IIC₂ 29-120cm; bruno (7,5YR 4/2, úmido); mosqueado comum pequeno distinto de vermelho amarelado (5YR 5/6, úmido); argila; moderada pequena e média blocos subangulares; poucos poros muito pequenos; muito firme, muito plástico e pegajosos; transição gradual e plana.
- IIIC₃ = 120-170cm+; bruno avermelhado (5YR 4/3, úmido), mosque<u>a</u> do comum pequeno difuso de vermelho amarelado (5YR 5/6, úmido); argila; poucos poros muito pequenos; muito pl<u>as</u> tico e pegajoso.

104

OBS: Não foi possível estudar todas as características do perfíl, devido ao alto grau de umidade.

PERFIL: Nº 06C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico de textura média pesada/pesada a partir de profundo, fortemente alcalino e li - geiramente salino a pouca profundidade, fortemente alcalino e salino a partir de média profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará. Município de Juazeiro do Norte.

Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com 1,0 a 2,5 de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo-arenoso do Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo-arenoso do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO: LOCAL: Capim pé de galinha, feijão de rola, mata pasto.

USO ATUAL: Capim.

- Ap 0 28 cm; bruno acinzentado muito escuro (10YR 3/2 , úmido); franco argiloso; moderada média blocos sub-angulares; poros comuns, muito pequenos; friável, plástico e pegajoso; transição clara e plana.
- IIC₁ 28 64 cm; bruno escuro (7,5YR 3/2, úmido); franco ar giloso; moderada pequena e média blocos sub-angulares; poros comuns pequenos e muito pequenos; friável, plástico e pegajoso; transição gradual e plana.
- IIIC₂ 64 111 cm; bruno escuro (7,5YR 3/2, úmido); mosqueado comum pequeno difuso de bruno (7,5YR 4/4, úmido) e cinza escuro (10YR 4/1, úmido); franco argiloso; fraca pequena e média blocos sub-angulares; poros comuns peque

nos; friável, plástico e pegajoso; transição gradual e plana.

IVC₃ - 111 - 170 cm+; bruno muito escuro (10YR 2/2, úmido); mosqueado abundante pequeno difuso de bruno escuro (5,5 YR 3/2, úmido); argila; moderada pequena e média blocos subangulares; poros comuns pequenos.

PROJETO: Vale dos Caras

PERFIL: Nº 07

CLASSIFICAÇÃO: Aluvião eutrófico de textura média/pesada a par tir de profundo, fortemente alcalino a pouca profundidade, fortemente alcalino e salino a partir de média profundidade, moderadamente dre nado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte --Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com cerca de 2,0% de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos. Qua ternário

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO: LOCAL:

- Ap 0-30cm; bruno escuro (7,5YR 4/2, ūmido); franco argilo arenoso; fraca pequena blocos subangulares; muitos poros muito pequenos e médios; muito friável, não plástico e não pegajoso; transição clara e plana.
- IIC₁ 30-75cm; bruno (7,5YR 4/4, úmido); franco argilo arenoso; moderada pequena e média blocos subangulares; poros comuns muito pequenos; friável, ligeiramente plástico e ligeiramente pegajoso; transição clara e plana.
- IIIC₂- 75-120cm; bruno amarelado (10YR 5/6, úmido); franco argilo arenoso; fraca pequena blocos subangulares; poros comuns muito pequenos e poucos pequenos; muito friavel, não plástico e não pegajoso; transição clara e plana.

IVC₃ - 120-170cm+; bruno acinzentado muito escuro (10YR 3/4, umido), mosqueado pouco pequeno distinto de bruno claro 7,5YR 6/4, umido); argila; moderada pequena e média blocos subangulares; poucos poros muito pequenos; firme, plástico e pegajoso.

PROJETO: Vale dos Carás

PERFIL: 07C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico de textura pesada, mal drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte.Vi-

de mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com aproximadamente 2,0% de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argiloso arenosos. Qua ternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Mal drenado

VEGETAÇÃO: LOCAL.

USO ATUAL: Junco, capim vela, turco, etc.

C₁ - 0 - 87 cm; argila; muito plástico e muito pegajoso.

IIIC₂- 87 - 148 cm; argıla muıto plástico e muito pegajoso.

OBS: Lençol freático a 38 cm de profundidade.

PERFIL: Nº 08

CLASSIFICAÇÃO: Aluvião eutrófico, de textura pesada, fortemente alcalino e salino a média profundidade, fortemente alcalino e ligeiramente salino a partir de profundo, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em solos aluviais com declividade variando de 0 - 2,5%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos.Qua ternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO: LOCAL:

- Ap 0-32cm; bruno acinzentado muito escuro (10YR 3/2, úmido); argila; fraca pequena e média blocos subangulares; muitos poros muito pequenos e pequenos; muito friável; plástico e ligeiramente pegajoso; transição clara e plana.
- IIC₁ 32-82cm; bruno acinzentado escuro (10YR 4/2, úmido); argila; moderada pequena e média blocos subangulares; poros comuns muito pequenos e pequenos; friável plástico e pegajoso; transição clara e plana.
- IIIC₂- 82-128cm; bruno escuro (10YR 3/3, úmido), mosqueado comum pequeno distinto de bruno forte (7,5YR 5/8, úmido); argila; moderada pequena e média blocos subangulares; poros comuns muito pequenos e pequenos; firme, muito plás tico e pegajoso; transição clara e plana.

IVC₃ - 128-170cm+; bruno avermelhado escuro (5YR 4/2, úmido); mosqueado abundante, pequeno difuso de vermelho amarelado (5YR 4/6, úmido); argila; poros comuns muito pequenos e pequenos; friável, plástico e ligeiramente pegajoso.

PERFIL: 08C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico de textura pesada, fortemente alcalino e salino a partir de pouca profundidade, imperfeitamente drenado.

LOCALIZAÇÃO: Estado do Ceará. Município de Juazeiro do Norte.

Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em relevo plano com declividade entre o 0 - 1.5%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo - arenosos .

Ouaternário.

MATERIAL ORIGINÁRIO: Sedimentos aluvionais do rio Carás.

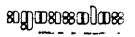
RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Imperfeitamente drenado

VEGETAÇÃO: LOCAL: Pimenta de lagoa, salsa, turco, junco, etc.

USO ATUAL: Arroz


Ap - 0 - 30 cm; bruno avermelhado escuro (5YR 3/2, úmido); argila; poros comuns muito muito pequenos e poucos pequenos; plástico e pegajoso; transição clara e plana.

IIC₁ - 30 - 82 cm; bruno acinzentado muito escuro (10YR 3/2, úmido), mosqueado pouco pequeno distinto de vermelho amarelado (5YR 5/6, úmido); argila; poucos poros muito pequenos; muito plástico e pegajoso; transição clara e plana.

IIIC₂ - 82 - 135 cm⁺; bruno (7,4YR 4/4, úmido); argila; plástico e ligeiramente pegajoso.

RAIZES: Poucas e finas em Ap

OBS: Devido ao alto grau de umidade do solo, não foi possível estudar todas as características do perfil.

PERFIL: Nº 09

CLASSIFICAÇÃO: Aluvião eutrófico de textura pesada, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com cerca de 2,0% de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos.Qua

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado.

VEGETAÇÃO: LOCAL:

- Ap 0-33cm; bruno escuro (7,5YR 3/2, umido); argila; fraca pequena blocos sub-angulares, poros comuns pequenos; friavel, plastico e pegajoso; transição clara e plana.
- IIC₁ 33-122cm; bruno (7,5YR 4/4, úmido); argila; moderada pequena e média blocos subangulares; poros comuns muito pequenos e pequenos; friável, muito plástico e muito pegajoso; transição clara e plana.
- IIIC₂- 122-160cm; bruno avermelhado escuro (5YR 3/2, úmido); ar gila; moderada, pequena, blocos subangulares; poros comuns muito pequenos e pequenos; friável, muito plástico e pegajoso.

PERFIL: Nº 09C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico de textura pesada, fortemente alcalino e salino a média profundidade, forte - mente alcalino em profundidade, imperfeitamente drenado.

LOCALIZAÇÃO: Estado do Ceará. Município de Juazeiro do Norte.

Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheiras aberta em terraço aluvio - nal com declividade entre 0 - 2,5%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo - arenosos.

Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Imperfeitamente drenado

VEGETAÇÃO LOCAL: Pimenta da lagoa, malva, junco, capim vela.

USO ATUAL:

- Ap 0 42 cm; bruno acinzentado muito escuro (10YR 3/2, úmi do); argila; poucos poros muito pequenos e pequenos; muito plástico e muito pegajoso; transição clara e plana.
- IIC₁- 42 84 cm; bruno escuro (10YR 3/3, úmido); mosqueado comum pequeno distinto de vermelho amarelado (5YR 5/6, úmido); argila; poucos poros pequenos; plástico e pega-joso; transição clara e plana.
- IIIC₂- 84 136 cm; bruno avermelhado escuro (5YR 3/2, úmido);
 mosqueado abundante pequeno difuso devermelho amarela do (5YR 5/6, úmido); argila; poucos poros muito peque nos.

OBS: Lençol freático a 138 cm de profundidade.

PERFIL: Nº 10

CLASSIFICAÇÃO: Aluvião eutrófico de textura pesada, fortemente alcalino e salino a partir de pouca profundidade, imperfeitamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em relevo plano com declividade entre 0 - 2,5%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argiloso arenosos.

Quaternário.

MATERIAL ORIGINÁRIO:

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Imperfeitamente drenado

VEGETAÇÃO: LOCAL: Pimenta de lagoa, salsa.

USO ATUAL: Arroz.

- Ap 0-27cm; bruno avermelhado escuro (5YR 3/2, úmido); argila; poros comuns muito pequenos e poucos pequenos; plastico e pegajoso; transição clara e plana.
- IIC₁ 27-85cm; bruno acinzentado muito escuro (10YR 3/2, úmido), mosqueado pouco pequeno distinto de vermelho amare lado (5YR 5/6, úmido); argila; poucos poros muito peque nos; muito plástico e pegajoso; transição clara e plana.
- IIIC₂- 85-130cm+; bruno (7,4YR 4/4, ūmido); argila; plāstico e ligeiramente pegajoso.

RATZES: Poucas e finas em Ap

OBS: Devido ao alto grau de umidade do solo, não foi possível estudar todas as características do perfíl.

PERFIL: Nº 10C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico, de textura pesada, fortemente alcalino e salino a média profundidada, fortemente te alcalino e ligeiramente salino a partir de profundo, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará. Município de Juazeiro do Norte.

Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em solos aluviais com declividade variando de 0 - 2.0%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos. Qua ternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo-arenoso do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado

VEGETAÇÃO LOCAL: junco, turco, capim vela, etc.

USO ATUAL:

Ap - 0 - 33 cm; bruno acinzentado muito escuro (10YR 3/2 , úmido); argila; fraca pequena e média blocos sub-angu - lares; muitos poros muito pequenos e pequenos; muito friável; plástico e ligeiramente pegajoso; transição clara e plana.

- IIC₁ 33 87 cm; bruno acinzentado escuro (10YR 4/2, úmido); argila; moderada pequena e média blocos sub-angulares; poros comuns muito pequenos e pequenos; friável plástico e pegajoso; transição clara e plana.
- IIIC₂- 87 131 cm; bruno escuro (10YR 3/3, úmido), mosqueado comum pequeno distinto de bruno forte (7,5YR 5/8,úmido); argila; moderada pequena e média blocos sub-angulares ; poros comuns muito pequenos e pequenos; firme, muito plástico e pegajoso; transição clara e plana.

IVC₃ - 131 - 173 cm+; bruno avermelhado escuro (5YR 4/2, úmido);
 mosqueado abundante, pequeno difuso de vermelho amarelado
 (5YR 4/6, úmido); argıla; poros comuns muito pequenos e
 pequenos; friável, plástico e ligeiramente pegajoso.

PROJETO: Vale dos Carás

PERFIL: NO 11

CLASSIFICAÇÃO: Aluvião eutrófico de textura pesada, fortemente alcalino e salino a média profundidade, fortemente mente alcalino em profundidade, imperfeitamente drenado.

LOCALIZAÇÃO: Estado do Cearã, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com declividade entre 0 - 2,5%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argila arenosos.

Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Imperfeitamente drenado

VEGETAÇÃO: LOCAL:

USO ATUAL:

- Ap 0-44cm; bruno acinzentado muito escuro (10YR 3/2, úmido); argila; poucos poros muito pequenos e pequenos; muito plástico e muito pegajoso; transição clara e plana.
- IIC₁ 44-82cm; bruno escuro (10YR 3/3, úmido); mosqueado comum pequeno distinto de vermelho amarelado (5YR 5/6, úmido); argila; poucos poros pequenos; plástico e pegajoso; transição clara e plana.
- IIIC₂- 82-132cm; bruno avermelhado escuro (5YR 3/2, úmido); mosqueado abundante pequeno difuso de vermelho amarelado (5YR 5/6, úmido); argila; poucos poros muito pequenos.

OBS: Lençol freático a 132 cm de profundidade.

PERFIL: Nº 11C (correlação)

CLASSIFICAÇÃO: Aluvião eutrófico, de textura pesada, fortemente alcalino e salino a média profundidade, fortemente te alcalino e ligerramente salino a partir de profundo, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará. Município de Juazeiro do Norte.

Vide mapa de solos.

SITUAÇÃO E DECLÍVIDADE: Trincheira aberta em solos aluviais com declividade variando de 0 - 1.5%.

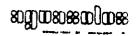
LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenoso. Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado


VEGETAÇÃO LOCAL: Salsa, capim vela, junco, turco, etc.

USO ATUAL:

Ap - 0 -29 cm; bruno acinzentado muito escuro (10YR 3/2, ú - mido); argila; fraca pequena e média blocos sub-angulares; muitos poros muito pequenos e pequenos; muito friá vel; plástico e ligerramente pegajoso; transição clara e plana.

- IIC₁ 29 78 cm; bruno acinzentado escuro (10YR 4/2, úmido); argila; moderada pequena e média blocos sub-angulares; poros comuns muito pequenos e pequenos; friável plástico e pegajoso; transição clara e plana.
- IIIC₂ 78 130 cm; bruno escuro (10YR 3/3, úmido), mosqueado comum pequeno distinto de bruno forte (7,5YR 5/8, úmi do); argila; moderada pequena e média blocos sub-angula res; poros comuns muito pequenos e pequenos; firme, muito plástico e pegajoso; transição clara e plana.

IVC₃ - 130 - 172 cm+; bruno avermelhado escuro (5YR 4/2, úmido); mosqueado abundante, pequeno difuso de vermelho amarelado (5YR 4/6, úmido); argıla poros comuns muito pequenos e pequenos; friável, plástico e ligeiramente pegajoso.

PERFIL: Nº 12

CLASSIFICAÇÃO: Aluvião eutrófico de textura média/média pesada a pouca profundidade/pesada a partir de média profundidade salino a pouca profundidade, muito alcalino e ligeiramente salino a partir de média profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte - Vide mapa de solos.

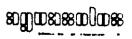
SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terreno aluvional com declividade de 0 - 2,5%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos. Qua ternário.

MATERIAL ORIGIONÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano


DRENAGEM: Moderamento drenado

VEGETAÇÃO: LOCAL:

- Ap 0-15cm; bruno (7,5YR 4/2, úmido); franco argilo arenoso; fraca pequena blocos subangulares; poros comuns peque nos; muito friável, ligeiramente plástico e ligeiramente pegajoso; transição clara e plana.
- IIC₁ 15-64cm; bruno escuro (7,5YR 3/2, úmido); franco argiloso; moderada pequena blocos subangulares; poucos poros muito pequenos e pequenos; friável, plástico e pegajoso; transição clara e plana.
- IIIC₂- 64-180CM+; bruno avermelhado escuro (5YR 3/2, umido); argila; moderada pequena e media blocos subangulares; po-

ros comuns muito pequenos; firme, muito plastico e muito pegajoso.

RAIZES: Poucas e finas em Ap; raras e finas em IIC₁.

PERFIL: Nº 13

CLASSIFICAÇÃO: Aluvião eutrófico de textura média pesada, fortemente alcalino e muito salino a pouca profundidade, fortemente alcalino a partir de média profundidade, moderadamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvial com declividade de 0 - 2,5%.

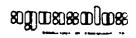
LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos.Qua ternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Moderadamente drenado


VEGETAÇÃO: LOCAL:

USO ATUAL: Arroz

- Ap 0-20cm; bruno escuro (10YR 4/3, úmido); franco argiloso; fraca pequena e média blocos subangulares; poros comuns, muito pequenos; firme plástico e pegajoso; transição gradual e plana.
- IIC₁ 20-90cm; bruno acinzentado muito escuro (10YR 3/2, úmido); franco argiloso; moderada pequena e média; blocos subangulares; poucos poros muito pequeno; muito firme muito plástico e pegajoso; transição gradual e plana.
- IIIC₂- 20-135cm; cinzento multo escuro (10YR 3/1, úmido); fran co argiloso; plástico e pegajoso.

RAÍZES: Poucas e finas em Ap

OBS: Lençol freático a 135cm, não foi possível tirar a estrutura da 3a. camada pois a mesma encontrava-se c/grande teor de umidade.

PERFIL: Nº 14

CLASSIFICAÇÃO: Aluvião eutrófico de textura média/pesada a par tir de profundo, fortemente alcalino e ligeiramente salino a partir de pouca profundidade, im perfeitamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trancheira aberta em terraço aluvional com aproximadamente 2,0% de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argilo arenosos.Qua ternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Imperfeitamente drenado.

VEGETAÇÃO: LOCAL:

- C₁ 0-25cm; bruno acinzentado muito escuro (10YR 3/2, úmido); franco argilo arenoso; fraca pequena blocos subangulares; poros comuns muito pequenos; muito friávelplástico e ligeiramente pegajoso; transição clara e plana.
- 11C₂ 25-90cm; preto (10YR 2/1, úmido); franco argilo arenoso; forte pequena e média blocos sub-angulares; poucos poros muito pequenos; firme, muito plástico e muito pegajoso; transição clara e plana.
- IIIC₃- 90-135cm; bruno escuro (10YR 3/3, úmido); argila; moderada pequena e média blocos subangulares; poros comuns muito pequenos e pequenos; friável, plástico e pegajoso.
- OBS: A 3a. camada encontrava-se muito umida por ocasião dos estudos.

PERFIL: Nº 15

CLASSIFICAÇÃO: Podzólico vermelho amarelo equivalente eutrófico plinthico abruptico, A fraco textura média, caatinga arbórea, arbustiva, relevo suave ondulado, imperfeitamente drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta no terço médio de pe quena elevação com declividade variando entre 2,5 e 6,0%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA:

MATERIAL ORIGINÁRIO: Saprolito da rocha subjacente.

RELEVO LOCAL: Suave ondulado

RELEVO REGIONAL: Suave ondulado

DRENAGEM: Imperfeitamente drenado

VEGETAÇÃO: LOCAL: Vassourinha, mata pasto, relogio, Jurema

USO ATUAL: Pastagem extensiva

- A₁ 0-34cm; bruno (10YR 4/3, úmido) franco argilo arenoso; fraca pequena blocos subangulares; muitos poros muito pequenos e médios; muito friável não plástico e não peganoso; transição abrupta e plana.
- B₁ 34-54cm; bruno amarelado escuro (10YR 4/4, úmido); mosqueado pouco pequeno distinto de vermelho (2,5YR 4/6, úmido) e bruno forte (7,5YR 5/6, úmido); franco argilo arenosos; poros comuns muito pequenos e pequenos; friável, ligeiramente plástico e ligeiramente pegajoso; transição gradual e plana.
- B₂ 54-98cm; cinzento claro (10YR 7/2, umido); mosqueado abundante grande proeminente de vermelho (2,5YR 4/8, umido); franco argiloso; moderada pequena e media blocos

- subangulares; poros comuns pequenos e médios; firme, plas tico e pegajoso; transição gradual e plana.
- B₃ 98-125cm+; cinzento claro (10YR 7/2, úmido); mosqueado abundante grande proeminente de vermelho (2,5YR 4/2, úmido); franco argilo arenoso; moderada pequena e media blocos subangulares; poros comuns muito pequenos e pequenos.

PERFIL: Nº 16

CLASSIFICAÇÃO: Vertisol A moderado textura média/pesada, caatinga arborea arbustiva relevo suave ondulado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terreno suave ondulado com declividade entre 2,5-6,0%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA:

MATERIAL ORIGINÁRIO:

RELEVO LOCAL: Suave ondulado

RELEVO REGIONAL: Suave ondulado

DRENAGEM: Moderadamente drenado.

VEGETAÇÃO: LOCAL: Relógio, Jurema, marmeleiro.

- A 0-16cm; bruno acinzentado muito escuro (10YR 3/2, úmido); franco argilo arenoso; maciça; muitos poros muito pequenos e pequenos; muito friável, ligeiramente plástico e ligeiramente pegajoso; transição clara e plana.
- C₂ 16-51cm; cinzento muito escuro (10YR 3/1, úmido); franco argiloso; firme plástico e pegajoso; transição gradual e plana.
- C₃ 51-120cm+; preto (10YR 2/1, úmido); argila; muito plástico e pegajoso.
- OBS: Devido ao alto grau de umidade do solo não foi possível estudar todas as características morfológicas do perfil.

PROJETO: Vale dos Carás

PERFIL: Nº 17

CLASSIFICAÇÃO: Vertisol A moderado, textura argilosa caatinga

arborea arbustiva relevo suave ondulado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte.

Vide planta de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terreno suave ondulado com declividade entre 2,5 e 6,0%

LITOLOGIA E FORMAÇÃO GEOLÓGICA:

MATERIAL ORIGINÁRIO:

RELEVO LOCAL: Suave ondulado

RELEVO REGIONAL: Suave ondulado.

DRENAGEM: Imperfeitamente drenado

VEGETAÇÃO: LOCAL:

- A₁ 0-22cm; bruno avermelhado escuro (5YR 3/2, úmido); franco argila arenoso; fraca pequena e média blocos subangulares; poros comuns pequenos; friável, plástico e muito pegajoso; transição clara e plana.
- B₁₁ 22-81cm; vermelho escuro (2,5YR 3/6, úmido); mosqueado abundante pequeno distinto de cinzento brunado claro (10YR 6/2, úmido), argila; fraca pequena e média blocos subangulares; poros comuns pequenos e muito pequenos; firme, plástico e muito pegajoso; transição clara e plana.
- B₁₂ 81-118cm; bruno avermelhado (5YR 4/4, úmido); argila; moderada pequena e média blocos subangulares; poros comuns pequenos e muitos pequenos; friável, plástico e muito pegajoso; transição clara e plana.
- B₂ 118-180cm+; bruno avermelhado escuro (5YR 3/4, úmido); argila; moderada média blocos subangulares; poucos poros muito pequenos; muito firme, muito plástico e muito pegajoso.

PROJETO: Vale dos Carás

PERFIL: Nº 18

CLASSIFICAÇÃO: Vertisol A moderado, textura argilosa caatinga ar

borea arbustiva relevo suave ondulado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte.

Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terreno com declividade variando entre 2,5 a 6,0%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA:

MATERIAL ORIGINÁRIO:

RELEVO LOCAL: Suave ondulado

RELEVO REGIONAL: Suave ondulado

DRENAGEM: Imperfeitamente drenado

VEGETAÇÃO: LOCAL:

USO ATUAL: Algodão

- Ap 0-24cm; bruno avermelhado escuro (2,5YR 3/4, úmido); argila; fraca pequena e média blocos subangulares; poros comuns pequenos e muito pequenos; firme, muito plástico e muito pegajoso; transição gradual e plana.
- C₁ 24-127cm; bruno avermelhado (2,5YR 4/4, úmido); argila; forte pequena e médla blocos subangulares; poucos poros muito pequenos; slikenside pouco e moderado; firme muito plástico e muito pegajoso; transição gradual e plana.
- C₂ 127-180cm+; vermelho acinzentado (10YR 4/4, úmido); argila; moderada pequena e média blocos subangulares; pou cos poros muito pequenos; slikenside pouco e moderado; muito firme, muito plástico e muito pegajoso.

PROJETO: Vale dos Carás

PERFIL: Nº 19

CLASSIFICAÇÃO: Vertisol A moderado, textura argilosa caatinga

arborea arbustiva relevo suave ondulado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte.

Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terreno suave ondulado com declividade variando entre 2,5 a 6,0%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA:

MATERIAL ORIGINÁRIO:

RELEVO LOCAL: Suave ondulado.

RELEVO REGIONAL: Suave ondulado

DRENAGEM: Imperfeitamente drenado

VEGETAÇÃO: LOCAL:

USO ATUAL: Algodão

- Ap 0-30cm; bruno avermelhado escuro (5YR 3/4, úmido); argila; moderada pequena e média blocos subangulares; poros comuns muito pequenos; firme, plástico e muito pegajoso; transição gradual e plana.
- C₁ 30-92cm; bruno avermelhado (5YR 4/3, úmido); argila;fo<u>r</u>
 te pequena e média blocos sub-angulares; poucos poros
 muito pequenos; slikenside pouco e moderado; forte; mu<u>i</u>
 to plástico e muito pegajoso; transição gradual e plana.
- C₂ 92-150cm+; bruno avermelhado (5YR 4/4, úmido); argila; moderada pequena e média blocos subangulares; poucos poros muito pequenos e pequenos; slikenside comum e moderado; firme muito plástico e muito pegajoso.

PROJETO: Vale dos Carás

PERFIL: Nº 20

CLASSIFICAÇÃO: Aluvião eutrófico de textura pesada, mal drenado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta em terraço aluvional com aproximadamente 2,0% de declividade.

LITOLOGIA E FORMAÇÃO GEOLÓGICA: Sedimentos argiloso arenosos .

Quaternário.

MATERIAL ORIGINÁRIO: Sedimentos argilo arenosos do Rio Carás.

RELEVO LOCAL: Plano

RELEVO REGIONAL: Plano

DRENAGEM: Mal drenado

VEGETAÇÃO: LOCAL:

USO ATUAL:

C₁ - 0-80cm; argila; muito plástico e muito pegajoso.

IIC, - 80-140cm+; argıla muito plástico e muito pegajoso.

OBS: Lençol freático a 30 cm de profundidade.

PROJETO: Vale dos Carás

Perfil: Nº 21

CLASSIFICAÇÃO: Areia quartzosa eutrófica A fraco caatinga arbórea arbustiva relevo suave ondulado.

LOCALIZAÇÃO: Estado do Cearã, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta num terço médio de pequena elevação, com declividade variando entre 4,0 e 6,0%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA:

MATERIAL ORIGINÁRIO.

RELEVO LOCAL: Suave ondulado

DRENAGEM: Moderadamente drenado

VEGETAÇÃO: LOCAL:

USO ATUAL:

- A 0-30cm; bruno acinzentado (10YR 5/2, úmido); areia; grãos simples; muitos poros muito pequenos e pequenos; solto, não plástico e não pegajoso; transição clara e plana.
- A₁₂ 30-100cm; bruno (10YR 5/3, úmido); areia; grãos simples; muitos poros muito pequenos e pequenos; solto, não plás tico e não pegajoso; transição clara e plana.
- C₁ 100-150cm+; bruno (10YR 5/3, úmido), mosqueado comum pequeno e médio distinto de amarelo avermelhado (7,5 YR 6/8, úmido); areia; grãos simples; poros comuns, muito pequenos e pequenos; solto, não plástico e não pegajoso.

OBS: Perfil úmido, por ocasião da descrição.

PROJETO: Vale dos Caras

PERFIL: Nº 22

CLASSIFICAÇÃO: Areia quartzosa eutrófica A fraco fase caatinga arbustiva relevo suave ondulado.

LOCALIZAÇÃO: Estado do Ceará, município de Juazeiro do Norte. Vide mapa de solos.

SITUAÇÃO E DECLIVIDADE: Trincheira aberta no terço superior de pequena elevação com declividade aproximada de 6,0%.

LITOLOGIA E FORMAÇÃO GEOLÓGICA:

MATERIAL ORIGINÁRIO:

RELEVO LOCAL: Suave ondulado

DRENAGEM: Bem drenado

VEGETAÇÃO LOCAL:

- A₁₁ 0-20cm; bruno acinzentado (10YR 5/2, úmido); areia franca; grãos simples; muitos poros muito pequenos e pequenos; solto, não plástico e não pegajoso; transição clara e plana.
- A₁₂ 20-110cm; bruno (10YR 5/3, úmido); areia franca; maciça; muitos poros muito pequenos e comuns médios; solto, não plástico e não pegajoso; transição clara e plana.
- C₁ 110-200cm+; cinzento brunado claro (10YR 6/2, úmido); mosqueado comum pequeno distinto de amarelo avermelhado (7,5 YR 6/8, úmido); areia franca; maciça; poros comuns muito pequenos e pequenos; solto; não plástico e não pegajoso.

5.6 - Dados Analíticos

RECURSOS ANALISE E INVESTIGAÇÃO DE SOLO LIDA

AV DA UNIVERSIDADE 1989

C C C 07.686,090/8001

66.000 — FORTALEZA — CEARÁ — BRASIL

						PROCED E	WCIA VAI	E DOS CAR	ÁS-CARI RÍ					PERFIL No.		
						INTERESS.	ADU ACU	ASOLOS-CO	NSULTORIA	DE ENG	ENHARIA L	TDA		BAT1 07 1 04 /		
A	mentin	NTE OU CAMAI		1 MUSTILI	SEL 1 10 4R .	1	ONFONCTO GR	LNULUMÉTRICA	٠,	MIGHTA VALUELL	1135.1	110 0 30 113	erini i	GING IN POROSION		
No .	Statute		Midde	faihana te	isinika Terca bi	na * • • • • • • • • • • • • • • • • • •	3 2 39	6383 32	* 60002					PLOCULAL AU	AMERICA	
6-981	,A p	, 0-	-27	1	1	9	43	27	21		Franco	argilo	arenoso			
982 I	псі	27-	.77	ı	I	7	53	22	18		Franco	arenoso	'			
983 I	IIIC 2	77-	169	j		10	52	21	17		Franco	arenoso	:			
	ENSIDAD	S	UM	IDADE %	1684 0	1	pH	LE & 25° (Vitrogenia	(/\	หน่อนา	VZZIAILVAFT L		
*****		Resi	1/3 //	P , 15 :	lian ° a	H U	_ K C 1	mmhas/rm	EQUIVALENTE	· · · · · · · · · · · · · · · · · · ·			OBULENCE	mg/tou g		
1.69		2.61	13	5	8	6.7	5.8	0 45		0 74	0.08	9	1 28	0.46		
1.76		2.64	11	4	7	6 9	6.0	0.42		0.45	0.03	13	0.78	0. 38		
1.65		2.60	10	4	6	8.0	7.1	0.55		0.38	0.03	11	0.67	0.35		
	L	C O	MPLBI	SORTI	/ 0 mE/100	g de Sola	<u> </u>	<u> </u>	100 3	1 0	D S	!		<u>!</u>		
<u>0</u> ++	++ Ng	<u> </u>	+	\$	P+ +V3+	AJ 3+	T	Na o/	•	<u>.</u>						
8.50	4.50	0.14	0.08	13.22	0.98	0.05	14.25	0,5	6 93	-			 			
7.10	2.70	0.10	0.12	10.02	-	0.00	10.02	1,1	9 100			أبر				
8.90	5.90	0.10	0.89	15.79	-	0.00	15.79	5,6	3 100							

RECURSOS ANALISE E INVESTIGAÇÃO DE SOLO LIDA

AV DA UNIVERSIDADE 1989

C G C 87 888 840/8081

MARON - PORTALEZA - CEARÁ - BRASI

							PROCEDÉN	CLA V	ALE DOS	CARÁS-CAR	i r i				PRRFIL VA	02
							12CENETIVE	DO A	GUASOLOS-	-consulto	RIA DE E	NCENHARLA	LTDA		DATA 07 /	04 /86
		SHALE ON CYMY		AMUST	11 201 40	AR .	10	COMPOSIÇÃO GRANCOMÉTRICA O				+ (4) (TUINL		- Poliosticial	
<u> </u>	Simbol		rindulade (m	· albana	1 04: 0:R0	Terra Fina	* * * 3 3548	2005	0 2- 0 302	• <u>د ران ۱</u>	AUTHUL -				PLOCEL SC TO	VIII II II
6-984	. c1	O	-46	}		1	7	35	28	30 ,		Franc	o argilo	50		
985	11 c 2	46	-151				5	22	31	42		Argil	Argila	ļ		
A p = 1 =	ENSID	DE Beat	1/2 &	I DADE	is Alask	AGUA UTIE	. Н и	pH K C (FE a 25° (EXT 547 mmhos/cm	LOUIN TIEVE	(arbuno	Attrogenia	LA	METÉRIA UHGANECA	P ASSIMHAVE mg/100 g	
1.6	8	2.61	24		10	14	6.5	5.8	0.39		0 67	0.08	8	1.16	`	
1.5	6	2.58	34		16	18	7.1	6.2	0.25		0 40	0.03	11	0.69	0.28	
<u> </u>		C (M P L E I	0 30AT	1 7 0	mB / teo g	do Sala			100 3	[5 / T ₀	BS			<u> </u>	
<u>~++</u>	144	, t	1 14	<u> </u>	1 4	+113+	AI 4+	7	No of	• 1	t j					
11.20	5.50	0.11	0.17	16.9	3 1	.08	0.08	18.14	0.93	94		.,,,,,,,		<u> </u>	<u></u>	
15.10	4.90	0.08	0.08 0.26			-	0.00	20.34	1.27	100)		13			
				}					1							

RECURSOS ANALISE E INVESTIGAÇÃO DE SOLO LIDA AV DA UNIVERSIDADE 1989

60.000 — FORTALIZA — CEARÁ — BRASIL

								PROCEDĒNI INTERESSA			CARAS - CAR - CONSULTO		PERFIL No. 03				
<u> </u>		OLIZAYT	E OU CANAI	94	UMUS	IMOSTRA SELA AU AR *.			MPOSIÇÃO CO	NANULOMÉTRICA 0 a		MICH V				GRAL DI	Polasticu
<u></u>		nebo		adulads M	i alhaus	(ascatho	Tema fini	7 4 4 17 0264 3 4	52005	0050002		,				FLOCULAÇÃO	- A1H 0M
-986 ·	A P		0-3	26				9	34	26	31		Franco a	argiloso			
987 II C 1 26-6		56				7	29	28	36		Franco argiloso						
988	III C 2		66-1	109				8	25	29	38 ,		Franco	rgi loso			
989	IV C 3		109-1	60				6	21	31	42		Argila				
,	BENEI	BABE	·1	UM	BADE	%	HUUA UTI	-	PH	CE a 25° I	1 1	Larbona	•	L/N	MATCHIA	ASSIMILAVEL P	.]
		e Beei		1/2 4	in 16 Alm		%	H u	KCI	makes/cm	EQUIT ALEXTE			<u> </u>	OREAVICA	mg/tou g	<u> </u>
1.7	3	2.	63	24		11	13	6.3	5.5	1 26		0.78	0.08	9	1.36	0.44	
1.9	ւ	2.	60	26		12	14	6 4	5.3	3.90		0.52	0.04	13	0.91	♦.38	
1.8	,	2.	61	29		14	15	7.0	6.1	5.30		0.46	0.04	10	0.80	0.35	
1.49	•	2.	58	34		14	20	7.7	6.8	5.40		0.41	0.02	14	0.72	0.28	
				MPLEIG	3 O R	TIVO	mE / 186	g de Selo	<u></u> ,		100 S	/ T)		.! <u>-</u>	<u>]</u>	<u> </u>
4+		+	+	+ No	5	H	+41	A) +	T	Na o/	, V						
8.10	3.4	0	0.09	4.80	16.	39 1	.62	0.42	18.43	26.0	34 89				 -		
		80.0	13.33	22.	61 1	.79	0.68	25.08	53.	-			الهي	*			
7.10	3.3	0	80.0	16.80	27.	28	-	0.00		61.5	58 100	-			 — _		
2.00	3.00	o	0.11	15.61	30.	72	-	0.00	-	50.0	31 100	-					

FICHA DE CARACTERIZAÇÃO DE PERFIL

PROCEDENCIA VALE DOS CARÁS-CARIRÍ

INTERESCEND ACTUASOLOS-CONSTITUCADA DE ENCEMBARÍA L'EDA

DATI 07 (04 / 86

leaves.	iai	HORIZONTE OU CAMADA			41	OF 1 132 PHYSON	AR .	(0)	MOTES VANTANE	(11)		CRAL OF PORO					
\$.0	Simi	ete:		Fresundiésée cm		l es estre	Terra tima	2000 0000	3005	c - 1003		**************************************	1135 (1) I (1) 11\1		FLOCAL LACTO	- VIII
-990	≜ p		0-	0-44				12	43	26	19		Franco				
991	11 6 2		44-	200				24	70	2	4		Areia		ļ		
	D E N S I I			{	MIDAD	£ %.	ACUA UTIL	- H ü	pli k. i. i	LAT SAT	ta to	(arbono	Aitrogenia	UX	MATEINA DIRANEA	4221741747.TT	
4 ,				1/2 /	- 1	() Aug	••						<u> </u>	! <u>.</u> .	ſ	mig/100 g	'
1.6	1	2.	.60	13		6	7	6.4	5.6	0.60		0 86	0.07	12	1.49	0 37	
1.4	3	2.	.63	5		2	3	6.7	5.9	0.39		0 38	0.02	14	0.66	0 11	
			C 6	MPLEI		B T I V O	mE/100 g	de Sale			100 5	/ 7 01					
c++		+	<u>,</u> +	H ₀		8 4	+413+	N 3+	T	Na e/	• V	,			·		
9.00	2.8	o	0.17	0.10	1	2.07	1.79	0.25	14.11	0.7	1 86				,		
2.30	1.20		0.14	0.04		3.68	0.67	0.05	4.40	0.9	1 84						
	}	}			}		1	}		}		\ <u></u>					

								PROC EDÊN O			arās-cari					PERFIL VO	Q5
America		HORIZON	TE OU CAMAI	м	AMU	STHA SELA AC	AR %	LATERESSAL	DAPUSIÇÎU GRA			ANGILA	IGENHARIA	ETDA 	710.51	DATA 07 /C	
i.e	<u> </u>	imbal e		didade S	1 dikans	, (48: siko	Terra bia	4 Grosse	4/4 4 Fine 0 2 0 05	0000000	4 (2 1) 4	NA PUHAL				FLOCULAL TO	AUDIO
6-99 2		C 1	0-	35			İ	7	30	28	35		Franco	argiloso)		
993	993 11 C		C 2 35-142				1	5	5 24		45		Argila				
994	994 III C 3 142-		200				. 8	17	28 47			Argila					
		SIDADE		UM	MIDADE %		1GUA UT	<u> </u> L	pH i	FE a 25° 1	! ta to	(\$(8400	1 1 L/A		MATCHET		<u></u>
Aparente		ste Beat		1/3 A	1/3 Aun 15 Aun		%) H (I	KLI	mmbos/cm		i			URGÁNICA	mg/tou y	<u> </u>
1.6	1	2	2.62	28		13	15	5.7	5.0	0 45	}	0.80	0 10	8	1.38	0.86	
1.6	2	:	2.59	3 2		14	18	5.0	4.5	4.00	İ	0.61	0.05	12	1.06	0 71	
1.6	6	2.57 3 5		3 5	15		20	5.2	4.6	4.00		0 44	0 04	10	0.77	0.66	
		<u> </u>		MPLEI		TIVO	m2 / 186	a de Sala	<u> </u>	<u> </u>	100 3	 	BS	<u> </u>		<u> </u>	<u> </u>
0 11	F	++	*+	+ Na	3	H+	+41 2+	A) 3+	T	Na aje	• ,	·					,
11.60	5	.20	0.35	0.27	17.6		.24	0.38	19.24	1.4	0 92	-			1,		-
16.20	16.20 9.00		0.09	9.27	34.5	56 1	.98	0.46	37.00	0 25,05 93			, whi				
14.40	8	.000	0.12	9.13	31.	.65	. 76	0.22	33.63	33.63 27,15		,					
				İ	1		į	1		1	- {		·····				

								IAV VAL	E DOS CAI	rás-cariri	•			habeir Mª Oe		
							INTERESSAL	00 AGU	ASOLOS- (CONSULTORI	A DE EN	CENHARIA I	LTDA		DAT1 07_/	04 /86
America	MORTEO	STE OU CAMA	М	AMUSTRU	SELA AO	AR *	co	MPOSIÇÃO GR	LYNTOMETRICA	• •	ABOLA VATORAL	A CLASSIFICAÇÃO TEXTIDIAL				PODEO STO VOI
	Simbolo Pools		midde	falkans	4s. aika	Teres Fina	Area G Dasa	02005	9 0 9 0 00 3	- (o ou	4				FLOCILIA (ÃU	TANTERAL
6-995	c ı	0-2	9				10	23	29	38		Franco	argilos	.0		
996	II C2	29-1	20				7	23	23	47		Argila		ļ		
997	111 C 3 120-170		70				. 9	17	26	48		Argila				
DENSIDADE UNICADE %					AGUA UTI	1 '		CE a 25" I		Cerbana	Aitzogenio	LIN	MATERIA	A22141FAAF		
4341				. 15	2.5 Aim		H U	KEI	mailac/cm	EULIVALEATE	<u>'</u>		·	MILANILA	mg/100 g	<u>(</u>
1.5	58 B	2.58	29	13		16	5.7	4.9	1.25		0.88	0.09	9	1.53	0.99	
1.6	5	2.60	35	16		19	6.0	5.1	4.20		0.69	0.05	13	1.19	0.83	
1.5	58	2.57	37	16		21	5.5	4.9	4.70		0.45	0 04	11	0.79	0.76	
			MPLES	80 A T 1	10	mE / 100	g de Sale	1		160 5	/ T Q	 B S			<u> </u>	
a +·	+ ++	+	+	5	H	+41	2+ Al	7	Na o/	• ,	<u> </u>					
8.50	4.30	0.13	1.94	14.87	ן ו	.20	0.20	16.27	11.9	92 91	۱			11.		···
14.20	7.20	0.09	17.25	38.74	1	1.12	0.12	39.38	43.4	BO 91	, <u> </u>			/		
14.10	6.90	6.90 0.09		33.38	1	1.41	0.17	34. <i>9</i> 6	34.8	34.87 95					···	
					}						<u> </u>					

								PROCEDÊN (\TERES\A			A RĀ S-CARII CONSULTORI		GENHARIA	LTDA		PERFIL No.	
America		M08426V	TE OU CAMAI		134051	RA 562.1 40	O AR .		omposição GRA		.,	ANGILA NATURE	(13)	DERIGIO TE	XTUII IL	GIOLOGIA P	AUROSION VALUEU
X.		Simbolo		ndidade	(alkana	i as. aiko	Terra Fina	- 32	2 0 05	60-0603						PROCEETE	
998	4	k p	0-:	30				12	42	25	21		Franco	argilo (arenoso		
999	111 (2 1	30-1	75]			9	96	22	30		Franco	argilo.	arenoso		
.000	111	C 2	75-1	120	ĺ		1	13	47	18	22		Franco	argilo a	irenoso		
.001	IV	C 3	120-1	170				6	20	31	43		Argila				
	D & H	SIDAD	6	UM	10408	%	ACUA UTIL	<u></u>		CE a 25° (1 10 10	, carbono	Mitrogenio	UN	MATERIA	P ASSIMILABEL	
		1	1 • • 1	1/3 Am	<u> </u>	IS ALM	%	H U	K C I	mmhes/cm	EOL IL AFTEZ LE	!	•"•		OHLANII A	mg/(60 g	
1.5	7	2	2.60	14		6	8	5.5	4 7	0.90		0.82	0.08	10	1.42	0.70	l
1.7	5	2	.63	21	İ	8	13	6.9	6.2	1.80		0.48	0.03	14	0.83	0.61	
1.6	2	2	.61	14	}	6	8	7.8	7.0	4.80		0.42	0.03	12	0.74	0.57	
1.6	1	2	.5 9	29		13	16	7.3	6.6	4.20		0.39	0.03	11	0.68	0.50	
		<u></u>	C G	MPLEIG	30 B 1	1 7 0	mE/190 g			1	1	/ T 0	BS			<u>'</u>	
cs+	+	++ Ng	+	He +	8	M ,		N 2+	T	Na o/s		4					
6.00	2	.50	0.13	0.48	9.11	1	. 32	0.43	10.86	4.42	2 84	_			, , , , , , , , , , , , , , , , , , , 		
8.10	3	.90	0.08	9.54	21.62		-	0.00	21.62	44.1.	3 100	-		1	4)-		
4.20	2	.20	0.10	11.04	17.54		-	0.00	17.54	62.94	100			/_	<u> </u>		
23.10	10	.90	0.13	16.48	50.61			0.00	50.61	32.56	5 100				· · · · · · · · · · · · · · · · · · ·		

PROCEDENCIA VALE DOS CARÁS-CARIRÍ

INTERESSADO AGUASOLOS-CONSULTORIA DE ENCENHARIA LTDA

PRRFIL V. 08

Assesses		HORESON	E OU CAMA		AM	M AJGR LUTTOU	D AR *	α	MPOSIÇÃO GR	ANULOMÉTRICA	•′•	HIGILA NATUHAL		HI ULJU TH		CHAU DI	Pomostos
	2	-		edidade CM	(alhaus	Cascalha	Terra Pina	Are e Grosse	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81(10	.000	NATUHAL *			HUNAL	PEULULAL IU	AAUUM
-1002	A	P	0-3	2		}	İ	7	27	26	40		Argila]
1003	11 (C 1	32-8	2				9	20	29	42		Argila				
1004	III	C 2	82-1	28				11	7	35	47		Argila				
1005	IV (С 3	128-1	70				6	13	33	48		Argila				
		IDADI		U	4 I D A D I	# ⁴ / ₆	ICHA UTIL		PH	CE a 25ª (Carbono	Aitragenia		MATÉHA	A221MIT47FI	
	****	1		1/3 /		II Alm	%	H U	KC1	MIT SAT manhes/cm	EUUIVALENTE	%	<u> </u> ••	LIN	ONGANICA	M6/100 0	
1.5	3	2.5	9	32		15	17	6.9	6.2	0.68		0.97	0.08	11	1.68	0.88	
1.7	5	2.6	0	34		15	19	6.3	5.8	4.70		0.76	0.05	14	1.32	0.76	
1.7	7	2.5	8	35		16	19	5.7	5.0	3.40		0 47	0.03	12	0.82	0.72	
1.7	1	2.5	7	39		17	22	5.7	5.1	3.00		0.41	0.03	13	0.72	0.65	
		·		MPLEX		TITO	mE/100 g	de Sele		-!	100 \$	/ T 0	<u> </u> S				<u>'</u>
6++		++	<u>,</u> +	+		n+	+41	N 3+	7	Na e/e	, , , , ,						
14.10	6.	90	0.13	0.90	22.0	03 -		0.00	22.03	4.08	100				110		
12.20	4.	60	0.09	9.67	26.	56 1	.06	0.04	27.66	34.96	96				of -		
12.10	6.	40	0.09	13.83	32.	42 1	.99	0.17	34.58	40.00							
11.30	4.	90	0.09	13.83	30.	12 2	.06	0.09	32.27	42.85	93			· · · · · · · · · · · · · · · · · · ·			

PHOCEDENCIA VALE DOS CARÁS-CARIRÍ

VTERESSADO AGUASOLOS-CONSULTORIA DE ENGENHARIA LTDA

PRRFIL No 09

0- 1 33- 2 122- ABE Beas 2.57	122 160 U M I D / 1/3 Aim		SLUA UTIL	9 7 8, 8, 8, .	7 19 16	38 31 34 CE a 25° (EXT NT maches/sin	46 43 42 1a ta EQUINALENTE	(arbona	Argila Argila Argila Argila	16 1(10 - 17)	MATERIA UILÂMICA	PLUCEL 14 (U)	
1 33- 2 122- ABE Bass 2.57	122 160 U M I D / 1/3 Aim	18 Aim	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8, 8,	19 16	31 34 CE a 25* (43 42		Argila Argila	1/1		ASSIMILATEL	
2 122- ABE Beas 2.57	U M I B /	18 Aim	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8,	16 _P il	34 CE a 25# (EXT NT	42		Argila	1/1		ASSIMILATEL	
A B E Real 2.57	U M 1 B /	18 Aim	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. H u 2	PH	CE a 250 (Aitrugenio	UA.		ASSIMILATEL	
2.57	1/3 Aim 37	18 Aim	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H u	·	— EXT NT	ا ز ا		1 -	1/4		ASSIMILATEL	
2.57	37		<u> </u>	1	KLI		EQUIT PLEATE	••	••	1/1	OHEARICA		
		16	21	ا د ه	1	1					TT-12 W-T-12 W-T-1		' -
240			l .	5 8	5.0	0 42		1.07	0 11	9	1.85	0.74	
2.60	33	13	20	5.5	4.9	0.68		0.95	0.07	12	1.64	0.50	
2.58	32	11	21	5.8	5.1	0.80		0 69	0.05	13	1.20	0.32	
	MPLEIO 1	SORTIVO	m2/100 g	de Sale	<u> </u>		190 S	/ T 0 B	S				<u> </u>
+	H like	s H+	- 2+ +Al	+ t	Ť	Na o/o	V						
0.15	0.31	23.46	0.76	0.11	26.33	1.1	7 97				/ ,)
0.16	0.94	24.10	1.25	0.68	26.03	3.6	93			<u> </u>	<i>?1</i> "		
0.10	1.47	20.87	1.36	0.35	22.58	6.51	1 92						
)	0.15 0.16	0.15 0.31 0.16 0.94	0.15 0.31 23.46 0.16 0.94 24.10	0.15 0.31 23.46 0.76 0.16 0.94 24.10 1.25	B B	B B	nt nt<	nt nt<	nt nt<	n+ n+<	nt nt<	at base base base base base 0.15 0.31 23.46 0.76 0.11 26.33 1.17 97 0.16 0.94 24.10 1.25 0.68 26.03 3.61 93	n n n n n n 0.15 0.31 23.46 0.76 0.11 26.33 1.17 97 0.16 0.94 24.10 1.25 0.68 26.03 3.61 93

RECURSOS ANALISE E INVESTIGAÇÃO DE SOLO LIDA

AV DA UNIVERSIDADE 1989

C E F 87 200 000/0001

46.866 - FORTALEZA - CEARA - BHANIL

FICHA DE CARACTERIZAÇÃO DE PERFIL

								PROCEDÊ			r ā s-cariri					PFRFIL No	
America	100	LIBORTE (OU CANA	M		WATEL LE !	AU AR .	INTERESS	Apo VGA			A DE ENG	GENHARIA L'	FDA 		DATA 07_/	- Policylliant
3.0	Sherive	ba	New	ndidade ,) sikons	l accail	e Terra tina	* * * uroses	4 4 4 F n 4	000 2002	- C. Co	MAILUL	[· 11 U()11 II.	CION IL	PLUCLE 41 10	AUIHH
6-1009	· A ;	P	0-	27				6	18	31	45		Argila				ı
1010	11 6 2	2	27-	85				, 5	15	32	48		Argila		ı		
1011	III C	3	85-	130				7	16	34	43		Argila				
				<u>, </u>		<u> </u>	•	<u> </u>	<u> </u>								
Apar	* # H S ! D	494	<u> </u>	1/3 £	MIDAD	8 % 15 Am	NAMA UTII	H U	الم الدا	EXT SAT		(arbono °•	hitrogenia **	U/N	MATERIA	ASSIMILATED Reg/100 u	
	61	2.59		22	 -	• • • • • • • • • • • • • • • • • • • •	- 	5.9	. ,		\	0.79	0.00				<u> </u>
1.		2.39	<u>'</u>	32	}	14	18	3.9	5.1	1.60	j	0.78	0.09	8	1.36	0.82	
1.	.67	2.61		37	ļ	15	25	6.2	5.4	7.70		0 69	0.05	12	1.20	0.76	}
1.	63	2.62		31		14	17	7.9	7.0	7.00		0.56	0.05	11	0.97	0.69	
				MPLEX	0 10	ATIVO	mE / 189 e	de Solo		<u> </u>	199 3	17 0	BS		<u> </u>	<u></u>	<u> </u>
0++	+	+	+	+			++4++	N ₃₊	7	Na =/4	· v	'] -	· B B ·				
14.80	5.20		. 34	3.58	23	.92	1.36	0.05	25.33	14.1	13 94				, , ,		
15.60	7.60	, ,	.09	20.0	43	.29	1,22	0.04	44.55	44.8	39 97				, , , , , , , , , , , , , , , , , , , 		
11.90	5.10	, 0	.13	19.25	36	. 38	-	0.00	36.38	52.9	100	, <u> </u>					
											_						

PROCEMÊNCIA VALE DOS CARÁS-CARIRÍ

INTERESSADO ACUASOLOS - CONSULTORIA DE ENCENHARIA LIDA

PERFIL No. 11

-		بجونظاه	UE OR CTHY	MA /	M	AUSTRA COLO	AO AR .	1	YMPOSIÇÎU CRA	NULOHETRICA	٠,	MOTE	(1)55	HI W TO TH	YTINA!	CHAL IN	PORTECTOR
No.	\$	-		ratidade FIR	l alhons	Lascari	ha Terra Fina	Are a Ginasa	OROCS	0050002	4 a a a a	0/0				FLOLULAL AU	NATI BAI
6-1012		A P	0-	-44		1		9	12	31	48		Argila	i.			
1013	II (Cl	44-	82		1		7	10	34	49		Argila	L.			
1014	III (C2	82-	132				6	12	35	47		Argila	l			
	RNS	DAS	<u> </u>	י ט י	41949	8 %	AGUA UTI	L	<u> </u>	CE a 25° t	1 3	Larboni	hitrogeniu	UN	MATERIA	VZZIAITUAF	
Apar			Real	1/3 A	-	15 ÅLM	1/4	H U	KCI	mmhes/rm	EUUIVALENTE	9,0	**	ļ. <u> </u>	DENIANICA	mg/100 g	
1.29	•	:	2.59	39		17	22	6.4	5.6	1.10		0.80	0.08	9	1.39	1.24	}
1.44		2	2.61	37		14	23	4.9	4.6	5.70		0.63	0.04	14	1.09	0.93	
1.51	ı	1	2.58	36	}	12	24	5.0	4.7	0.50		0.49	0.04	12	0.00	0.75	
		<u></u>	£ (MPLEI	. 30	B7170		do Solo		<u> </u>	- 1	S/T	085				
<u>0</u> ++		++	*	+		5	4+43*+	N 3+	T	Na o/0		<u>. </u>					
16.10	9.	70	0.30	0.97	27	1.07	1.09	0.05	28.21	3.4	3 96	, -			1 21		
17.20	9.	60	0.15	14.00	40	.75	1.82	0.70	43.27	32.3	5 94	, <u> -</u>		7.	#		
14.50	7.2	20	0.13	19.25	41	.08	1.63	0.25	42.96	44.8	1 96	·					
				l	1		1	[[-					

PROCEDÊNCIA VALE DOS CARÁS-CARIRÍ

PERFIL No. 12

INTERESSAINO ACITAS OF OS - CONSULTORIA DE ENCENHARIA L'IDA

DATA 07 / 04 / 86

3.0 Simbolo Protondata					MUSTRA SEL	4 AU AR .	er er	MPOSIÇÃO GR	AAULONÉTRICA	° 0	MUSILA	11354	richelo II	ATURAL	GINC 61	tomeste
		Profes	rdulado rit	f albana	Lases	ska Terra bio	a * 0 11 0 11 0	02005	0000003	A G A					FLOLUL 1, 10	NATER
Å p	1	0-1	.5				a	39	24	29		Franco	argilo a	renoso		
II C	ì	15-6	14		j		7 1	41	29	33		Franco a	argiloso)		
III C	2	64-1	.80				. 6	18	33	43		Argila				
ENSII	2 C A Q		n 1	MIDAD	R %	AGUA UT	· 1	pH	CE a 25° I	ta to	(arbene	Kitrogenia	1/5	AUCHER	ASSIMILAVE P	<u>'</u>
		4 1	1/3 /		15 Aum	0'4	H U	KCI	mmhes/i m	EQUITALENTE	••	•/•		ORGÁNICA	mq/100 y	1
, }	2,	63	18	,	8	10	6.2	5 .3	7.8		0.82	0.08	10	1 42	0.87	
	2.	60	23	,	11	12	6.4	5.5	0.55		0.71	0.05	14	1.23	0.62	
	2.	58	33	,	15	18	5,5	5.0	2.30		0.51				0.56	
		C D	MPLET	0 30	BTIVO	-E/100		.1		100 5	17 0	BS				
1	+	<u>"</u> +	Ne.		5	H +VI	Al 3+	7	Na u/o	,						
5.70	0	0.28	0.18	18	.46	0.98	0.06	19.50	0.92	95				11		
6.00	0	0.15	0.60	18	.05	1.16	0.05	19.26	3.11	94			7	~/		
7.3	0	0.13	6.95	28	.48	1.64	0.28	30,40	22.86	94						
	ENSI	A P II C 1 III C 2 ENSIDADS 11 R c 2, 2.	A P 0-1 II C 1 15-6 III C 2 64-1 ENSIDADE 11	A P 0-15 II C1 15-64 III C2 64-180 EMSIDADE U 2,63 18 2,60 23 2.58 33 CDMPLB1 M+	A p	A p	A p	A p	A p	A p	A p	A p	A p	A p	A p	Red

								PROCEDÉM (VTERESSA	***		Caras-Cai Consultoi		ENGENH≜RIA I	-TDA		PERFIL No. 13
Arrests .	Wes	MULLINE OF	_	- '	LHUSTEL	SELY YU YR	۱.۰.		IMPOSIÇÃO GRA			ANG IL	• · · · · · · · · · · · · · · · · · · ·	tica to an	TIULL	GRSU DE POROSIDAT
	Sembol	<u> </u>) parter	Milade M	raikaus ra	acashe 1	Teern tina	7 0 5 7 0004	A/8 6 F///6	g Čs . ' Ša	* ()					FEOLULIC TO A STERNAL
6-1018	Å p		0-	22	!	İ		; ;	36	26	32		Franco	areiloso	3	
1019	II C 1	İ	-:0 -	ەد		1		9	26	27	38		Franco	argilose	٠	
1G20	111 C 2		90-	135				6	35	26	33		 Franco	argiloso	·	
	DENSIDADS				IDADE %		ACUA UTIE	1	PH	CE = 25° 1				l un	MATCHA	P
4000	i		1/3 Am	1 25 /	1	*	H U	XLI	mmhus/cm	EQUIT SEENTE	!		1	DINANIL 3	meg/tou e	
1.51		2.63		27	13		14	6.1	5 2	15.00		0 78	0.08	9	1.35	0.94
1.73	•	2.59		30	13		17	5.2	4.6	7.50		0.69				0.89
1.69	,	2.62		26	12		14	7.4	6,5	7.50		0.55	0.05	11	0.95	0 74
			C O	MPLEIG	SORTII	0 mi	B/100 g	4. 5.1.	<u> </u>	<u> </u>	100 2	/ 1	OB\$		<u> </u>	<u> </u>
	1 1	+	*	*	3	HT +4	u ²⁺	A1 +	7	N= 0/0	*					
12.90	7.30	o.	20	20.17	40.57	0.7	8	0.20	41.55	48.54	98	-			112	·
6.10	3.30	0.	10	13.83	23.33	0.9	,	0.30	24.60	56.21	L 95)- -	(17)			
5.00							0.00	22.72	68,66	100	o -				<u> </u>	
						<u> </u>				<u> </u>					-,,	

RECURSOS ANALISE E INVESTIGAÇÃO DE SOLO LTDA AV. DA UNIVERSIDADE 1989

FICHA DE CARACTENIZAÇÃO DE PERFIL

								PROCEDÊNC	IA VALI	DOS CAR	ÁS- CARLE	n_				PERFIL Va. 14
								INTERESS (E	0 AGU	ASOLOS-CO	NSULTORIA	DE ENCE	ENHARIA LT	'DA		DAT1 07 , 04 / 8
	hos	HEUNTE	OU CAMAL		AMOST	NA SELA 40	us *.	ro	veosição caz	NULOMÉTRICA	9/0	AMULA NATURAL	1 (1)	ILICTO TEA	* 990.51	GINU DE PORGSTOA
Lo.	Simbol			edidade M	i zikant	Lascalhe	Terca Fina	A e e (iroase 2 3 a	2 0 03	9 9 9 9 9 9	1,653	, , , , , , , , , , , , , , , , , , ,				FLOCULAÇÃO AMERIM
6-1021	c	1	<u> </u>	-25			1	11	36	25	28		Franco a	rgilo a	renoso	
1022	11 C	2	25-	.90			1	9	42	27	22		Franco a	rgilo a	renoso	
1023	III c	3	90-	-135				7	26	26	41		Argila			
	012430				I DADE		MSDY OUIT		pH	CE a 25° (EŲI IV ALEXTE	(arbono	Nitragento	LIN	MATCHIA	ASSIMILAVET
Apare		R e	<u>• 1</u>	1/3 Ata	<u> </u>	i iu	•	H 0	K C I	Minthes/cm	1		<u> </u>		UNGASTEA	asg/100 y
1.55		2.6	2	19		,	12	6.5	5.9	0.82		1.05	0.11	9	1.82	0.92
1.61		2.6	1	13		5	8	7.3	6.8	3.20		0.55	0.07	12	1.65	0.85
1.75		2.5	9	34		14	20	8.4	7.5	2.80		0 60	0.06	10	1.05	0.72
	·		C O	MPLEX	1081	170	m2/100 g	4s Sala	<u>I.</u>	_!	100 5	/ T 01	BS			-!
<u>_</u>	14	+	*+	Ha +	5	H ⁺	+41	A1 3+	Ť	Na 0/0	*					
12.10	5.10	.	0.35	1.43	18.98		1.12	0.07	20.17	7.0	8 94				1/2	
11.00	5.00	•	0.10	14.20	30.30		-	0.00	30.30	69.9	5 100	o			gri	
6.00	4.00)	0.11	10.49	20.60		-	0.00	20.60	50.9	2 100	D				
					1	1	1	1								

						PROCEDÊN		E DOS CAR ASOLOS-CO		_	ENHARIA LI	rda Adr		PERFIE Na BATA O7 _ /	
-	HORIZ	ONTE OU CAMAI	DA	AMUSTILA S	ELA AU AR .	(OMPOSIÇÃO GRA	NULOMÉTRICA	٠. }	MIGLA	<u> </u>	HI NO NO TEX	T111.51	Chris bi	rotostictsi
No.	Simbolo		mdidade rm	i sikens i as	acho Terra fin	A 414 6 2 20114	_20c5	0050002	7,002	VALUAL	ILNI			FLOCULAÇÃO	MILIM
6-1024	A 1	0-	-34			13	48	18	21		Franco	argilo	arenoso		
1025	8 1	34-	-54	<u> </u>		9	39	23	29		Franco	argilo	arenoso		I
1026	B 2	54-	-98			11	22	28	39		Franco	argilos	80	ı	ı
1027	B 3	98-	-125			. 7	43	23	27		Franco	argilo	arenoso		
	A CISHA	B C C C C C C C C C C C C C C C C C C C	U M	IDADE %	AGUA UT	ur H n	pH K L J	CE a 25º 1 EXT 54T monhus/im	LO CO EQUIVALENTE	, (arbonu	Altrugentu	L/A	MATTONA	ASSIMILAVEL mg/100 g	L.
	1		1 .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·					1	·		<u> </u>	.1	1	
1.67	'	2.60	14	6	8	5.5	4.9	0.44	İ	0.46	0.03	12	0.80	0.76	
1.64		2.62	21	9	12	5 1	4.0	0.35		0.42	0 03	11	0.74	0.70	
1.79	•	2.58	30	14	16	6.1	5.3	0.68		0.38	0.02	14	0.67	0.65	
1.90		2.61	20	8	12	5.9	5.2	1.38		0.33	0.02	13	0.58	0.40	
			MPLEIG	SORTIV	0 mR/104				190	77 0	B.S.				
4+	++ Mg	<u>*</u>	+	8	H + H + H	¶ 3+	7	Na e/s	, ,						
4.90	2.10	0.32	0.05	7.37	2.42	1.22	11.01	0.45	67		· · · · · · · · · · · · · · · · · · ·		./6		
5.10	3.70	0.22	0.16	9.18	2.74	1.65	13.57	1.17	68			77	/		
16.20	7.80	0.52	1.49	26.01	1.22	0.25	27.48	5.42	95						
11.20	5.20	0.18	1.51	18.09	1.39	0.25	19.73	7,65	92						

							PROCEDEN	CIA VALI	E DOS CAI	LÁS -CARI	RÍ				PERFIL Nu	
							LZZJÆSTVI	DO AGU.	ASOLOS-CO	NSUKTORI.	A DE EN	ŒNHARIA L	TDA		DAT1 07 . /	04 / 86
Amount	H09174	NTE OU CAMA	'	AMO	A P.S. P.STO	<u> </u>	(0	OMBOZIĆYO CHY	NULOMÉTRICA	• •	ABUILA	11.00	1811 N. NO 181	CTIUS VI.		Potosin Vil
N.a	- Simbole		endadade Em	f albaus	Lascatho	Terra Fina	A # 6 0 0#86	02005	51110	1002		_			HEOLELA, AU	ZAH WAI
6-1028	A 1	0	-16				1 9	45	25	21		Franco	argilo a	renoso		ı
1029	c 2	16	-51				12	26	29	دد		Franco	argiloso			
1030	С 3	51	-120				7	18	32	43		Argila				
4,	ERSIDA:	B	U h	IDADR	% 16 Aug.	ICL (DTIL	н	pli KC f	CE a 25° (EXT 54T manhes/cm		(arbene	Altrageniu	UA	VINTENIA	V771AIFVAFI h	
	1			- -	10 100		1 3	1	mentens) t tu	1			.[mg/luv y	
1.76		2.63	13		5	8	6 1	5 2	0.52		0.95	0.11	8	1.65	0.80	
1.72		2.60	23		10	13	6.8	6.0	0.82		0.77	0.06	12	1.33	0.72	
1.74		2.62	31		14	17	8.1	7.2	0.52		0.64	0.04	13	1.12	0.63	
	l	C (MPLEX	0 30A	TIVO	mE/100 g	do Sale	1	<u> </u>	100 5	1 0	85			<u> </u>	
a++	++ Ng	" +		S	#	+4	AI 3+	Ť	Na e/6	*	<u> </u>					
6.10	5.40	0.25	0.10	11.8	5 0	.97	0.05	12.87	0.7	77 92	: -			14.6-		
18.20	11.3	0.38	0.70	30.5	8	-	0.00	30.58	2.2	8 10	0	 -				
18.50	11.3	0.16	0.96	30.9	2	-	0.00	30.92	3.1	0 10	۰ [
					-		1		1	ļ	<u> </u>					

RECURSOS ANALISE E INVESTIGAÇÃO DE SOLO LTDA AV DA UNIVERSIDADE 1989 C C L 61.001.0001

FICHA DE CARACTERIZAÇÃO DE PERFIL

PROCEDÊNCIA	VALE DOS CARÁS-CARIRÍ
(ATEMANA ATA)	AGUASOLOS-CONSULTORIA DE ENGENHARIA LTDA

PRREIL No. 17 DAT1 07 , 04 , 86

America	114	ORIZON	TE OU CAMAI	DA İ	AMEL	STRY SELA AO	UR º's		MPOSIÇTO GRA	NULOMÉTRICA	• ,	AND BLA VALUEAL	11333	eb u to TEN	Tist		tilleulte
N.o	Simb	hele		undidade cm	l albaus	, tasaiho	Terra Fina	A18 1 3/0184	A	0050		MILITURE		round ir		FLOCLLAG TO	7111113
-1031	A 1	ı	0-	-22				12	34	24	30		Franco	argilo a	arenoso		
1032	В	1.	22-	81			1	8	15	30	47		Argila				
1033	B	12	81-	118				7	17	31	45		Argila				
1034	B	2	118-	180				9	19	29	43		Argila				
D 1	1243	DID	6	U M	1 D 1 D 2	•/•	ICUI UMIL		Hų	CE a 25°	- J 1	(arbeno	Aitrageniu	1 ./\	MATERIA	ASSIMILAVEL	**************************************
Aperes				1/2 24		15 Aim	%	H ₂ U	N.C.I	mmitas/cm			*/*		ORGANICA	mg/100 g	
1.57	Ì	2.	. 59	21		10	11	7.0	6.2	0.45		1.05	0.15	7	1.82	0.92	i
1.62	- 1	2.	.60	36		16	20	6.9	6.0	0.53		0.46	0.03	12	0.80	0.75	ı
1.68		2.	. 59	34		15	19	8 4	7.6	0.68		0.39	0.04	9	0.68	0.68	
1.87		2.	.62	32		12	20	8.4	7.5	1.10		0.33	0.03	11	0.57	0.55	
······································			c e	MPLEX	0 508	T1 V O	mE/100 g	de Sele	<u> </u>		100 S	/ T 0	BS	<u> </u>		<u></u>	
<u>α</u> ++		++	ı,†	+		#	+41	A) +	Ţ	Na o/	• %				····	··	
19.00	9.0	00	0.52	0.12	28	.64	-	0.00	28.64	0.4	1 100	-			yt-		
26.90	12.1	10	0.41	0.94	40	-35 -	-	0.00	40.35	2.3	2 100			- F	*/		
27.20	13.4	40	0.17	3.25	44	.02 -	-	0.00	44.02	7.3	8 100						
27.00	12.8	BO	0.14	0.82	40	. 76 -	-	0.00	40.76	2.0	1 100						

RECURSOS ANALISE E INVESTIGAÇÃO DE SOLO LIDA AV. DA UNIVERSIDADE 1989

FICHA DE CARACTERIZAÇÃO DE PERFIL

VALE DOS CARÁS-CARIRÍ

PERFIL No. 18

ACUASOLOS-CONSULTORIA DE ENCENHARIA LIDA

DATA 07 _ / 04 / 86 .

Anne		n istico l.	E OU CAMAI		AM	DETRA SEICA A	0 AR %	00	MPOSIÇÃO CAL	ANULOMETRICA	***	ARGILA]			CHAU DE	POMISHINA
No.	Sur	-			Calbane	Castains	Torre Place	2 0 2	Areis Pins 0 8-0 0e	0 00 0 002	81181A 8000F	NATURAL %	[[15.1	HI AL TO TER	ITUHAL	PEOLULAÇÃO	NATIONAL
6-1035	٠ ,	P	o-:	24				10	20	29	41		Argila				
1036	C 1		24-	127			ļ	9	13	30	48		Argila				
1037	C 2	!	127-	180				7	12	32	49		Argila				
		DABI		U	MIDADI	1 %	ACUA UTIL	!	H	CE a 25° C	3	Carbono	Nitrogenio	CIN	MATÉRUA	P ASSIMILAVE	
4,444		A	• • 1	1/3	ر حا	IŞ Alm	%	M 0	# C I	Minhas/Cut	EDUIAVIENLE	*	*		UNGANICA	mg/160 g	
1.45	,	2.	59	41		14	27	8.2	7.4	0.58		0.48	0.06	a	0.83	0.83	
1.50	,	2.6	50	35		12	23	8.6	7.5	0.60		0.37	0.03	12	0.65	0.72	}
1.57	'	2.5	58	37		16	21	7.6	6 9	0.90		0.33	0.02	15	0.58	0.64	
-			ε 9	MPLEX		TIVO	=E/100 g		<u> </u>	<u>l</u> _	100	/T 01	I	·	<u> </u>	.l	. <u>.</u>
<u>~</u> ++		++	<u> ,</u> +	+	8		+4+	A1 2+	Ţ	Na o/s	,	'					
40.10	16.	90	0.90	0.31	58.		-	0.00	58-21	0.53	100	,			18.20		<u></u>
38.60	14,	20	0.15	3.91	56.4	36	-	0.00	56.86	6.87	100		·	1	7		
32.50	13.	50	0.12	9.54	55.6	6	-	0.00	55.66	17.13	100	· }-					
	<u></u>				1					1	ŀ					-	

									PROCEDÊNC INTERESSAD			ARÁS-CARI CONSULTOR		ENC	ENHAR[A	LTDA		PERFIL No Data 07 ₂₇ 0	
Acres			IS ON COMM	M	AM	DETTILL SE	CA AG A	A %	cu	MPOSIÇÃO CRA	INULOMETRICA	%	AJIGIL NATUK	A	(1353)	HILLO TH	CT300 A.L.		PIPITIZIMICT
No.	\$1mb	olo	Peda	ndidodo xis	Cathaus	Cana	ike	Terra Fina	Are a Grosse 2 0 2	Areia Fina 0 9-0 05	008 0 002	A	6/ ₉					PLOCULAL IU	MATTHIA
6-1038	жр		0-	30					8	16	29	47			Argila				
1039	c 1		30-	92					10	10	32	48			Argila				
1040	C 2		92-	150				٠	7	16	31	46			Argila				
	8 N S I	BAB	B	n 1	HIDABI	*/*		ACUA UTIL	[pH 1	CB a 25° C	. 3	Carbo		Nitrogenia	L/N	MATÉRIA	P ASSIMILAVE	
	818	A	**1	1/2 4	-	16 Ave		%	Я 0	KCI	mmhes/cm		E %		*		UNGÂNICA	mg/140 g	<u>!</u>
1.41		2.	. 56	35		13		22	8.0	7.1	0.50		0.	88	0.08	10	1.52	0.81	!
1.46		2.	. 59	39		16		23	8.5	7.7	0.45		o.	70	0 05	13	1.22	0.70	}
1.54		2.	.61	37		14		23	8.3	7.6	0.75		0.	46	0.03	12	0.80	0.56	
			€ €	M		1117		mR/190 g	4. 1.1.	<u> </u>	<u> </u>	100	\$ / T	0.8	\$			<u></u>	<u> </u>
0++	N		<u>k</u> +	Ha Ha		•	<u></u> +	-w ³⁺	A)+	Ţ	No 4/	10	*	<u> </u>					
42.60	26.2	20	0.34	0.28	69	. 42	-		0.00	69.42	0.	40 10	00		 -		(AF		<u> </u>
42.60	21.4	60	0.54	0.92	65.	.46	-		0.00	65.46	1.	40 10	00	-			14		
41.50	17.3	x 0	0.13	5.62	64.	.55	-		0.00	64+55	8.	70 10	10						
				1												<u></u>			

RECURSOS ANÁLISE E INVESTIGAÇÃO DE SOLO LTDA AV. DA UNIVERSIDADE, 1989

FICHA DE CARACTERIZAÇÃO DE PERFIL

								PROCEDĒM			CARÁS-CAI CONSULTO		encenhari <i>a</i>	LTDA		PERFIL No.	
America			IR OR CLIMA	M /	A)·	MARY 2007 V	10 AA %,	α	Marosicy Chr			ARGICA NATURAL	1	FILLIO TE		CILAD DE	POHOSIDAD
H.	30		Photo		Lathens	Coscalho	Terra Pina	Area Green	Area Fina 0 2-0 03	S111 e 0 06 0 00g	A r g () •	9/0				PLOCULAÇÃO	KATUKAL
-1041	C, I		0-6	ю		1	<u> </u>	9	13	33	45		Argila				
1042	II C	2	80-1	.40				,	10	35	48		Argila	L			
			<u> </u>														
			• • 1	1/2 M	-	16 Alm	MARK UTTE	1,0	الإس KCI	CS a 25° C EXT SAT mmhee/cm	ENGTYANDE	Carbons %	Nitrogenie %) C/N	MATÉRIA UNGÁNICA	ASZIMILAVEI	
		2	. 59	36		16	20	7.2	6.4	0.48		0.95	0.10	9	1.64	0.76	
		2	.61	38		17	21	8.4	7.5	0.50		0.69	0 04	15	1.19	0.59	
			<u> </u>	MPLEX	• :•	A 7 1 V O	m2/(00 (40 8010		<u> </u>	100	5 / T 0	<u> </u>			<u></u>	<u></u>
- F-	F	++1	<u>,+</u>	+	T	8	+44+	AJ 8+	Ť	No o/	:						
35.90		.10	0.44	0.29	50	.73	-	0.00	50.73	0.5	57 1	.00			sti-		
33.80	11	.00	0.49	4.08	49	.37	-	0.00	49.37	8,3	26]	.00		1			
		İ			1							-	 				

VELE DOS CARÁS-CARIRÍ

PRRFIL N. 21

 ,								LATERASSA	06 ACT	JASOLOS-C	ONSULTORI	A DE ENG	JENHARIA I	TDA		DATA_Q7_ /	04 /86
		nonei (r	WE 60 CTIT	l	AM	DETRA SECA A	0 Ah %	cc	MPOSIÇÃO CR	ANULOMETRICA	•,	ARGILA NATURAL	(1)54	en al lo ten	YTIN AI		ronosma
- 46				can	l'albens	Canaihe	Terra Flea	Areia Grossa 2-0 2	0 2-0 00	2000000	40003	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				FLULULAÇÃO	Velener
6-1043	A	11	a	-30				23	68	3	4		Arela				
1044	A	12	30	-100				25	68	2	5		Arera				
1045	c	1	100	-150			,	21	68	4	7		Arela			 	j
	B H # 1	1 3 A D	1	U a	IDADI	%	ACUA UTIL	L	PH	CE a 25° C		Carbane	Nitragenia	C/N	MATERIA	P	
4,41	444	•	1001	E/2 A		tā Alm	%	N G	KCI	mmbes/Em	EQUIVALENTS	*	%		UNGLINEA	mg/100 g	
1.4	8	} ;	2.60	5		2	3	6.6	5.8	0.45		9.30	0.02	14	0.53	0.32	
1.8	2	} ;	2.64	5	\	3	2	5.9	5.1	0.38		0.29	0.02	13	0.50	0.28	
1.7	7	1	2.62	7		3	4	5.6	5.0	0.45		0.24	0.01	15	9.42	0.22	
		L.,		MPLEX	. 101	7170	mB/100 g	do Sala	<u> </u>	<u></u>	100	\$ / T 0	BS	! <u> </u>	<u> </u>	<u></u>	<u> </u>
<u>~</u> ++		++	<u> </u>	100	8		+n _{s+}	N ₈₊	T	Na a/c	,	_					<u></u>
1.20	0.6	50	0.25	0.08	2.1	3 ·	0.68	0,14	2.95	2.7	72	 -			ali to		
0.30	0.2	20	0.13	0.04	0.6	7	0.42	0.30	1.39	2.8	7 48						
0.60	0.2	20	0.13	0.04	0.9	7	0.63	0.25	1.85	2.1	6 52	<u> </u>			 _	<u></u> -	 -
				L	1			1		1	1						

PROCEDÊNCIA VALE DOS CARÁS-CARIRI-

INTERESSADO

AGUASOLOS-CONSULTORIA DE ENGENHARIA LTDA

PERFIL No. 22 DATA 07 04 / 86

	ı	11/100	E 65 CANA	M	AM	OSTRA SECA A	D AR %	CE	MPOSIÇÃO CRA	MULOMÉTRICA	%	AHGILA Natural	1100	en iciu Tex	Tiru 41	CULTO DIE	POINSINA
20	200				Calhone	Cascalho	Terra Plaa	5 0 S	Are a Fina 0 2-0 06	2000000	*(0.003 *(01)*	%				PLOLULA, 40	NATERIAL
6-1046	A 1	1	o-:	20				25	63	5	7		Arela	franca	ı		
1047	A 1	2	20-	100				19	66	6	9		Areia	franca			
1048	c 1	ı	100-2	200				23	65	4	8		Arela	franca			
				y :	HIBAD	± %	ACIA UTIL	. i	p.M	CR a 24° C	1	Carbono	Nitrogenie	C/N	MATERIA	ASSIMILAVE	
Apare		A.		1/3 A		15 Atm	%	3 H 0	R C I	nanhos/tm	EQUIVALENTE	*	*		ORGÁNICA	me/100 g	<u> </u>
1.50		2.6	51	5		3	2	6.1	5.3	0.50		0.32	0.02	12	0.56	0.36	
1.38		2.5	8	8		3	5	5.4	4.9	0.30		0.27	0.01	14	0.47	0.20	
1.01		2.6	2	6		3	3	5.9	5.0	0.70		0.22	0.02	11	0.38	0.17	
			£ 6	MPLEI		A T I T 0	m2/100 g	de Sais	<u> </u>	<u> </u>	100	5 / T DI	B S		<u> </u>		
6 ++		++	<u>r</u> +	+		8 11	+4+	N3+	Ť	Na o/s	•	_					
1.10	0.7	٥	0.11	0.02	1.	.93	0.62	0.06	2.61	0.76	74	-			ild		
0.80	0.2	۵	0.12	0.03	1.	.15	0.84	0.54	2.53	1.18	45			7.	7		
0.60	0.2	0	0.12	0.04	0.	.96	0.52	0.14	1.62	2.46	59	_					
		- 1				1		į		1	1						

5.7 - Calculo da Capacidade de Água Disponível

Nº do Perfil	Simbo- lo	Espessu- ra (m)	Densidade Aparente	Umidade a 1/3 atm(%)	Umidade a 15 atm (%)	Umidade Equi- valente (%)	Água Útil	Capacidade de Água Disponível	Valor Acumulado
01	Ap	0,27	1,69	13	5	_	8	3,65	-
	1111	0,50	ι,76	11	4	***	7	6,16	9,81
	11102	0,92	1,65	10	4	~	6	9,11	18,92
02	Cl	0,46	1,68	24	10	~	14	10,82	-
:	IIC2	1,05	1,56	34	16	-	18	29,48	40,30
03	Ар	0,26	1,73	24	11	***	13	5,85	
	1101	0,40	1,91	26	12	-	14	10,70	16,55
	11102	0,43	1,87	29	14	-	15	12,06	28,61
	IVC3	0,51	1,49	34	14	-	20	15,20	43,81
04	Ар	0,44	1,61	13	6	-	7	4,96	
Š	1102	1,56	1,43	5	2	-	3	6,69	11,65
05	C1	0,35	1,61	28	13	-	15	8,45	
Í	IIC2	1,07	1,62	32	14	-	18	31,20	39,65
}	IIIC3	0,58	1,66	35	15	-	20	19,26	58,91

Nº do Perfíl	Simbo- lo	Espessu- ra (m)	Densidade Aparente	Umidade a 1/3 atm(%)	Umidade a 15 atm (%)	Umidade Equi- valente (%)	Água Útil	Capacidade de Água Disponível	Valor Acumulado
06	C1	0,29	1,58	29	13	_	16	7,33	
	TIC2	0,91	1,65	35	1(-	19	28,53	35,86
	IIIC3	0,50	1,58	37	16	-	21	16,59	52,45
07	Аp	0,30	1,57	14	6	-	8	3,77	
:	1101	0,45	1,75	21	8	-	13	10,24	14,01
	J11C2	0,45	1,62	1 4	6	-	8	5,83	19,84
	1AC3	0,50	1,61	29	13	-	16	12,88	32,72
0.8	Ар	0,32	1,53	32	15	-	17	8,32	
	IIC1	0,50	1,75	34	15	-	19	16,62	24,94
	111C2	0,46	1,77	35	16	-	19	15,47	40,41
	IVC3	0,42	1,71	39	17	-	22	- 15,80	56,21
09	Ар	0,33	1,50	37	16	-	21	10,39	
	ITC1	0,89	1,61	33	13	-	20	28,66	39,05
	IIIC2	0,38	1,68	32	11	-	21	13,41	52,46

Nº do Perfil	Simbo- lo	Espessu- ra (m)	Densidade Aparente	Umidade a 1/3 atm(%)	Umidade a 15 atm (%)	Umidade Equi- valente (%)	Água Útil	Capacidade de Água Disponível	Valor Acumulado
10	Ap	0,27	1,61	32	14	-	18	7,82	
	1102	0,58	1,67	37	15	-	25	24,21	32,03
	T11C3	0,45	1,63	31	14	-	17	12,47	44,50
11	Ар	0,44	1,29	39	17		22	12,49	
	1101	0,38	1,44	37	14	-	23	12,58	25,07
	IIIC2	0,50	1,51	36	12	-	24	18,12	43,19
1 2	Λр	0,15	1,57	18	8	-	10	2,35	
	1102	0,49	1,55	23	11	-	12	7,44	9,79
	IIIC3	1,16	1,77	33	15	-	18	36,96	46,75
13	Ар	0,20	1,51	27	13	-	14	4,23	
	1101	0,70	1,73	30	13	<u>-</u>	17	20,59	24,82
	11102	0,45	1,69	26	12	-	14	10,65	35,47
14	C1	0,25	1,55	19	7	-	12	4,65	
	IIC2	0,65	1,61	13	5	-	8	8,37	13,02
	11103	0,45	1,75	34	14 .	_	20	15,75	28,77

Nº do Perf i l	Simbo- lo	Espessu- ra (m)	Densidade Aparente	Umidade a 1/3 atm(%)	Umidade a 15 atm (%)	Umidade Equi- valente (%)	Agua Útil	Capacidade de Agua Disponível	Valor Acumulado
15	A 1	0,34	1,67	14	6	-	8	4,54	
	В 1	0,20	1,64	21	9	-	12	3,94	8,48
	В2	0,44	1,79	30	14	-	16	12,60	21,08
	В 3	0,27	1,90	20	8	-	12	6,16	27,24
16	A1	0,16	1,76	1.3	5	-	8	2,25	
	C 2	0,35	1,72	2 3	10	-	13	7,83	10,08
	C 3	0,69	1,74	31	14	-	17	20,41	30,49
17	Λ1	0,22	1,57	21	10	-	11	3,80	
	C1	0,59	1,62	36	16	-	20	19,12	22,92
	C2	0,37	1,68	34	15	-	19	11,81	34,73
	С3	0,62	1,87	32	12	-	20	23,19	57,92
1.8	Ap	0,24	1,45	41	14		27	9,40	
	C1	1,03	1,50	35	12	-	23	35,53	44,93
	C2	0,53	1,57	37	16	-	21	17,47	62,40

Nº do Perfil	Simbo- lo	Espessu- ra (m)	Densidade Aparente	Umidade a 1/3 atm(%)	Umidade a 15 atm (%)	Umidade Equi- valente (%)	Água Útil	Capacidade de Água Disponível	Valor Acumulado
19	Ap	0,30	1,41	35	13	-	22	9,31	
	C1	0,62	1,46	39	16	-	2 3	21,82	82,80
	C2	0,58	1,54	37	14	-	23	20,54	103,34
20	C1	0,80	- -	36	16	-	20	-	-
	1102	0,60		38	17	-	21	_	-
2 1	A11	0,30	1,48	5	2	-	3	1,33	
	A 1 2	0,70	1,82	5	3	-	2	2,55	3,88
	C1	0,50	1,77	7	3	-	4	3,54	7,42
22	A11	0,20	1,50	5	3	-	2	0,60	
	A 1 2	0,80	1,38	8	3	-	5	5,52	6,12
	C1	1,00	1,01	6	3	-	3	3,03	9,15
			•						

6 - FERTILIDADE

A fertilidade de um solo não deve ser medida apenas em função dos níveis de elementos químicos ofertados pelos mesmos e que são revelados pelos resultados analíticos do solo, com esta finalidade.

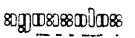
Afora este aspecto, outros de importância, talvez até superior, devem ser considerados. Os valores de soma de bases, a saturação, a condutividade elétrica, a percentagem sódio trocavel no complexo de troca e, a capacidade de troca de cátions. Este último é da maior importância, pois o mesmo revela qual a condição que tem o solo de permitir a troca de elementos químicos entre a sua solução e a micela de argila do mesmo.

Em outras palavras, isto proporciona a que se proceda a troca programada de elementos retidos na micela de argila do solo, as vezes indesejáveis, por outros de efeitos benéficos, que estão na solução do solo ou que são aplicados na forma de adubações ou como corretivos. Como exemplo poderíamos citar a troca de sódio retido nas micelas de argila de solo, pelo cálcio introduzido ao mesmo, através de calagem ou adubação planejada.

- Outros fatores que também não podem ser omitidos na avaliação da fertilidade, são a alcalinidade e a salinidade. Mesmo que um solo apresente elevados níveis de elementos quími cos necessários ao suprimento e desenvolvimento das culturas, porem se mostre com condutividade elétrica alta (salinidade) ou elevada percentagem de sódio trocável no complexo sortivo (alcalinidade), este solo não poderá ser considerado de boa fertilidade, pelo menos enquanto perdure esta situação.

Portanto, pelo o que foi dito acima, conclui-se que a fertilidade do solo é função do arranjamento combinado de to-dos estes fatores considerados.

Assim uma recomendação consciente não deve se estribar pura e simplesmente nos resultados das análises de fertilidade da camada superficial do solo. Até mesmo a composição granulométrica do solo deve ser considerada, posto que, a aplicação de alguns fertilizantes, de alta solubilidade, em solo arenoso, sujeita-se a perdas altamente significativas, com consideráveis prejuízos financeiros.


Para as aluviões constata-se que a fertilidade poderia ser considerada alta na grande maioria das unidades. Estas apesar de apresentarem elevados níveis de elementos químicos necessários às culturas, se mostram com problemas de alcalinidade e/ou salinidade que impedem destas unidades serem caracterizadas como de boa fertilidade. Apenas as unidades $A_{e,1}$, $A_{e,7}$, $A_{e,10}$ e $A_{e,13}$ não apresentaram, suficiência, elementos minerais a serem consumidos pelas culturas.

O pH em todas as unidades de solos aluviais encontra - se próximo a neutralidade, nas camadas superficiais, ou seja, na profundidade explorada pelas raízes da maioria das culturas. Este pH ora pode chegar a ligeiramente ácido ora a ligeiramente alcalino.

Como a maioria dos solos aluviais são de textura pesada ou media pesada, recomendamos a utilização de adubo orgânico nas formulações de adubações, para que os mesmos concorram para a estruturação do solo, sua aeração e aumento de permeabilidade, além de combater a alcalinidade e salinidade. Nas aluviões de textura leve ou média, também, recomendamos adubo orgânico, para que a matéria orgânica aumente a fertilidade do solo, eleve a capacidade de troca de cátions dos mesmos, permitindo-lhes um melhor aproveitamento dos adubos minerais a serem utilizados nos plantios. Além destas funções a matéria orgânica promove uma melhor estruturação do solo e eleva a capacidade de retenção de umidade, que é uma coisa muito importante para os solos arenosos.

Pelo que se vê, adubo orgânico sempre que se disponha, deve ser empregado nos solos.

Nas unidades de solos aluviais que apresentam proble-

mas de alcalinidade, deve-se aplicar fertilizantes que tendam a reverter esta tendência. Para tanto, os fertilizantes a rem aplicados devem promover a acidificação da reação do solo e ao mesmo tempo, dispô-lo de boa quantidade de cálcio. Para a consecução do primeiro intento, pode aplicar adubos à base radical SO (sulfato de amônia, sulfato de potassio). A obten ção da segunda finalidade, pode ser conseguida com o uso fertilizantes que tenham um bom teor de óxido de cálcio em sua composição. Pretende-se com a combinação de fertilizantes estas características, obter-se a formação do sulfato de cálcio na solução do solo. Este cálcio por apresentar um poder de deslocamento duas vezes superior ao do sódio, promove a saída deste da micela de argila, ocupando seu lugar. A retirada sodio da micela de argila para a solução do solo, facilita combinação do mesmo com o radical SO4 que se encontra nessa so lução, dando origem ao sulfato de sodio, um tipo de sal soluvel e de mais facil eliminação do solo por lixiviação drenagem.

Nos solos aluviais de textura arenosa, nas areias quar tzosas e no podzólico, recomenda-se além da aplicação do ester co de gado, nas formulações de adubações, o parcelamento obrigatório dos adubos minerais a base de nitrogênio.

Os vertisolos devem ser de manejo comparável aos aluviões de textura pesada.

As recomendações de adubações que serão feitos adiante, levam em consideração os aspectos discutidos neste capítulo.

165

6.1 - Dados Analíticos

THE CURBOS ANALYSES E INVESTIGAÇÃO DE SOLOS LIDA

Avenida da Universidado 1989 Fones 226 0118 e 231 0427
Benfica Cep 60 000 Fortaleza Ceará

INTERESSADO ACUASOLOS-CONSULTORIA DE ENGLNHARIA LIDA

PROCEDENCIA VALL 1835 (ARÁS-CAPIPI .

Resultados da Analise do Selo	SUGESTÕES	, PARA ADL	JBAÇÃO E C	ALAGEM
Fostoro 3 9 ppm — Чихо				-
Potassio 55 ppm= Mčdro				
Calcio I Magnesio 12.80 me /.= Alto				
Afuminio 0 05 me ./• ; i-11 6 7	t		cario/Ha de dias antes do	
Textura - Franco argilo archoso Teor de Materia Organica 1 26 .	Responsavel Tecnico	Marca do Remetente	Numero de Laboratorio	Data da Analise
Cultura a ser feita	idea	P - 1 /	F-981	05-04-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 5.

RECURSOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidade 1989 Fones 226 0118 a 231 0427

Bonfica Cep 60 000 Fortaliza Ceará

INTERESSADO - ACUASOLOS-CONSTITUONIA DE ENCENTIARLA LIDA

PROCEDENCIA VALL INS CARÁS-CARERE

Resultados da Analise do Solo	SUGESTÕES	S PARA ADI	JBAÇÃO E C	ALAGEM
Fostoro 3.6 ppm=Barxo				
Potassio 43 ppm=Jarxo				
Calcio i Magnesio 16.20 me f,= Balko me f,=				
Aluminio 0 06 me./* (H 6 4			lcario/Ha de i dias antes do	•
Textura - Franco argilloso Teor de Materia Organica (1.09 -,	Ri ponsavel Tecnico	Marca do Remetente	Numero de Laboratorio	Data d Analise
Cultura a ser leda	Laper	P -2 /	F-984	05~04~8

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 \$.

HECURSOS ANALISES E INVESTIGAÇÃO DE SOLOS LIDA

Avenida da Universidado 1989 Fone: 226 0118 + 231 0427

Benfica Cep 60 000 Fortsliza Ceará

INTERESSADO ACUASOLOS-CONSULTORIA DE ENGENHARIA LTDA .

PROCEDENCIA VALL DOS CARAS-CARIRI .

Resultados do Audiro do Celo	SUGESTÕES PARA ADUBAÇÃO E CALAGEM		
Fostoro 4.2 ppm- baixo			
Potissia 39 ppm Barxo			
Calcio Flaguesio 11.20 m// Alto			
Аlumино 0.36 me./- [1] 6.2	toncladas de calcario/Ha de picieren cia doloniitico 30 a 60 días antes do plantio		
Textura Franco argilloso Leor de Materia Organica 1 32 ;	Responsavel Maica do Numero de Data da Tecnico Poinctente Laboratorio Analise		
Cultura a ser leita	P- 3 - F-986 05-04-86		

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 \$.

RECURSOS ANALISES E INVESTIGAÇÃO F... SOLOS LTDA

Avenida da Universidi de 1989 Foner 226 0118 e 231 0427

Benfica Cep 60 000 Fortaliza Ceará

INTERESSADO ACEASOLOS-CONSULTOPIA DE ENCENHARIA LIDA .

PROCEDENCIA VALL INS CARAS-CARERT

Resultados da Anúlico do Solo	SUGESIÕES PARA ADUBAÇÃO E CALAGEM
Fostoro 3 5 ppin= BALXO	
Polassio 66.0 ppni Mcdio	
Cilcio I Mignicio 11.60 mirj. Alto	
Aluminio 0.24 me./* 1-11 6.4	toneladas de calcario/Ha de preieren
Textura Franco arenoso Teor de Materia Organica 1 42	Remetente Laboratorio Analise
Cultura a ser feda	P - 4 , F-990 05-04-8

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R 115.

HI CURJOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidado 1989 Fones 226 0118 e 231 0427

Benfica Crp 60 000 Fortaleza Ceatá

INTERESSADO ACUASOLOS-CONSULTORIA DE ENCENHAPIA LIDA

PROCEDENCIA VALL DOS CAPAS-CARIPI .

Resultados da Analice do Selo	SUGESIÕES PARA ADUBAÇÃO E CALAGEM			
Fosloro 7 9 ppm= Baixo				
Polassio 136 ppm—^^1to				
Calcio + 16.00 Al to Magnesio me*/_=	-!			
Aluminio 0 36 me./• PH 5.6	toneladas de calcario/Ha de preferen- cia dolamitico 30 a 60 dias antes do plantio			
Textura - Franco argiloso Teor de Materia Organica 1 34 %	Responsavel Marca do Numero de Data da Tecnico Remetente Laboratorio Analise			
Cultura a ser leita	[ml. P- 5 - F-992 05-04-86			

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R 11 .

RECURJOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidade 1989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Fortaleza Ceará

INTERESSADO - ACUASOLOS-CONSULTOPIA DE ENCENHARIA L $\underline{T}DA$.

PROCEDÊNCIA VALL DOS CARAS-CARTRE

Resultados da Analise do Sulo	SUGESTÕES PARA ADUBAÇÃO E CALAGEM
Fosioro 8.6 ppm= Balxo	
Polassio 51.2 ppm= Nedto	
Calcio + Magnesio 12.10 me*/.= Alto	
Aluminio 0.15 me ./* H 5 6	toneladas de calcario/Ha de preieren- cia dolomítico 30 a 60 dias antes do plantio
Textura Franco argilloso Teor de Materia Organica 1 53 -/-	Responsavel Marca do Numero de Data da l'ecnico Remetente Laboratório Analise
Cultura a ser leita	P-6 F-995 05-04-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 \$.

RECURJOS ANALISES E INVESTIGAÇÃO DE SOLOS LIDA

Avenida da Universidado 1989 Fones 226 0118 e 231 0427

Beinfies Cep 60 000 Fortsleza Ceará

INTERESSADO AGUASOROS-CONSULTORIA DE ENCENHARIA ELDA .

PROCEDÊNCIA VALL' DOS CARAS-CARIRI .

Resultados da Analico do Colo	SUCESTÕES PARA ADUBAÇÃO E CALAGEM				
l'osloro 7.2 ppm - Baixo					
Potassio 52.0 ppin-Barko					
Calciu 1 Magnesio 8,50 me / Al to					
Alumino 0.42 me_/- pH 5.4	toneladas de calcano/Ha de preieren- cia dolomítico 30 a 60 dias antes do plantio				
Textura - Franco argilo arenoso Teor de Materia Organica - 1-40 - 17.	Responsavel Marca do Numero de Data da Tecnico Reinetente Laboratorio Analise				
Cultura a ser feita	P-7 - F-998 05-04-86				

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 \$.

RECURSOS ANALISES E INVESTIGAÇÃO DE SOLOS LEDA

Avenida da Universidade 1989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Fortslicza Ceará

INTERESSADO AGUASOLOS-CONSULTORIA DE ENCENHARIA LIDA .

PROCEDENCIA VALL 1805 CARAS -CAPIRE

Resultados da Análise do Solo	SUGESTÕES PARA ADUBAÇÃO E CALAGEM
f osforo 8.2 ppm = Barxo	
Potassio 35.0 ppin— Batxo	-
Calcio + Magnesio 16.40 me•/₀≈Alto	-
Aluminio 0.06 me_/* 111 6 7	toneladas de calcario/Ha, de preieren cia dolomítico 30 a 60 días antes do plantio
Textura Argilosa Teor de Materia Organica 1 66 °,.	Responsavel Marca do Numero de Data da Tecnico Remetente Laboratorio Analise
Cultura a ser feita	P-8 F-1002 05-04-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA REIS.

RECURJOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidade 1989 Fones 276 0118 e 231 0427

Benfica Cep 60 000 Fortoleza Ceará

INTERESSADO ACTIASOLOS -CONSTITUCIDA DE LINGUNHARIA LIDA .

PROCEDENCIA VALL DOS CARAS-CARERE

Besillado da Anderedo 1.1	SUGESTÔFS PARA ADUBAÇÃO E CALAGEM		
Fosforo 7,4 ppm— BALLO			
Polassio 121.0 ppm Alto	_		
Calcio + Magnesio 24.80 me*/Alto			
Aluminio 0.10 me./• pH 5.8	toncladas de calcario/Ha de preieren- cia dolomítico 30 a 60 días antes do plantio.		
Textura Argila Teor de Materia Organica 1-82	Responsavel Marca do Numero de Data da Tecnico Remetento Laboratorio Analiue		
Cultura a ser leita	F-9 - F-1006 05-0 4-86		

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R 1 1 5.

RECURJOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidade 1989 Fones 226 0118 e 231 0427

Cenfica Cep 60 000 Fortaliza Ceará

INTERESSADO - ACHASOLOS-CONSULIORIA DE ENCENHARIA LTDA

PROCEDENCIA VALL DOS CARAS-CARTRE .

Resultados da Anabre do felo	SUGESTÕES PARA ADUBAÇÃO E CALAGEM	
Fostoro 8.1 ppm— Baixo		
Potassio 132.5 ppm= Alto		
Calcio 19.10 me*/" Alto		
Aluminio 0.05 me./- pf 5.8	toneladas de calcario/Ha de preieren cia dolomítico 30 a 60 dias antes do plantio	
Textura - Argilosa Teor de Materia Organica 1 34 ∵.	Reriponsavel Marca do Numero de Data da Tecnico Remetente Laboratorio Analiue	
Cultura a ser feita	P- 10 A / F-1009 05-04-80	

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 \$.

RECURJOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidado 1989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Fortaliza Cears

INTERESSADO - ACPASOLOS-CONSULTORIA DE ENCENHARIA L'IDA .

PROCEDENCIA VALL DOS CARAS-CARIRI

Resultado de Anales do Selo (1906 STOL) PARA ADUBAÇÃO E C		AI AGEM		
Fostoro 9.8 ppm - Baixo				
Potassio 116.9 ppm= Alto	}			
Calcio Magnesio 25.20 me*/_=-Alto				
Aluminio 0.05 me./• jitl 6.3	toneladas de calcarro/Ha de preieren cia dolomítico 30 a 60 dias antes do plantio			
Textura - Argila Teor de Materia Organica 1 36 ∵.	Responsavel Tecnico	Marca do Remetente	Numero de Laboratorio	Data da Analise
Cultura a ser feita	All	P 11 B ~	F-1012	05-04-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R 11 1 5.

RECURSOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidarki 1989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Fortaliza Ceará

INTERESSADO AGUASOLOS-CONSULTORIA DE ENGENHARIA LTDA ,

PROCEDENCIA VALE DOS CARAS-CARLIRI

Resultados da Analise do Sulo	SUGESTÕES PARA ADUBAÇÃO E CALAGEM			
Fosforo 8.5 ρρπι= ΔΙτο				
Polassio 109.0 ppm= Alto				
Calcio Magnesio 17.80 me*/_ Alto				
Aluminio 0.06 me./- pi1 6.2			cano/Ha de p dias antes do	
Textura - Franco argilo arenoso Teor de Materia Organica 1 40 %	Responsavel Tecnico	Marca do Remotente	Numero de Laboratorio	Data da Analise
Cultura a ser feita	MIL	P- 12	F-1015	05-04-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R E I S.

RECURSOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidado 1989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Forteleza Ceará

INTERESSADO - ACHASOLOS CONSULTOREA DE ENGLNHARIA LIDA .

PROCEDÊNCIA VALL DOS CARAS-CARIRI

Resultados da Amitro do 1 do	SUGESTOLS PARA ADUBAÇÃO E CALAGEM		
Fostoro 9.2 ppm- Baixo			
Potessio 78 ppm= Médio	-		
Calcio 14.20 Magnesio ne / _e -			
Aluminio 0.20 me./- (il 1 6 0	toneladas de calcario/Ha, de preieren- cia doloinítico 30 a 60 dias antes do plantio		
Textura Franco argilloso Teor de Materia Organica 1 34	Responsavel Marca do Numero de Data da Tecnico Remetente Laboratorio Analise		
Cultura a ser leita	P- 13 - F-1018 05-04-86		

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R 1 1 5.

RECURSOS ANÁLISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidade 1989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Fortificza Ceará

INTERESSADO ACUASOLOS-CONSULTORIA DE ENGENHARIA LTDA .

PROCEDÊNCIA VTIF DOS CARAS-CARIRI .

Resultados da Analise do Solo	SUGESIÕES PARA ADUBAÇÃO E CALAGEM			ALAGEM
Fastoro 9.0 ppm - Balko				
Potassio 136.0 ppm= Alto				
Calcio 17.10 me*/.= Alto				
Aluminio 0.06 me ./• pt 6 4			lcario/Ha de dias antes do	•
Textura Franco argilo arenoso feor de Materia Organica 1 80 %	Responsavel Lecnico	Marca do Remetento	Numero de L iboratorio	Data da Analise
Cultura a ser feita	MIL	P-14 /	F-1021	05-04-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R 1 1 3.

RECURSOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidado 1989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Fortaliza Ceará

INTERESSADO AGUASOLOS-CONSULTORIA DE ENGENHARIA ETDA .

PROCEDÊNCIA VALLE DOS CARAS-CARIRI .

Resultados da Amili e do Solo	SUGESTÕES PARA ADUBAÇÃO E CALAGEM			
fosloro 7.5 ppm = Barko				
Potassio 125.0 ppiii - Alto				
Calcio + Magnesio 6.90 me /_=Al to				
Alumino 1.20 me./* pl1 5.5	toneladas de calcario/Ha de preieren- cia dolomítico 30 a 60 dias antes do plantio			
Textura - Franco argilo arenoso Teor de Materia Organica 0.80 %	Responsavel Marca do Numero de Data da l'ecnico Remetente Laboratorio Analise			
Cultura a ser feita	F-15 - F-1024 05-04-1			

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 \$.

RECURSOS ANÁLISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidade 3989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Furtaliza Ceará

INTERESSADO AGUASOLOS-CONSULTORIA DE ENCENHARIA LIDA .

PROCEDENCIA VALLEDOS CARAS -CARERE.

R	esultados da Analise do Solo	SUGESTÕES PARA ADUBAÇÃO E CALAGEM			ALAGEM
Losloro	8.1 ррп = Вагхо				
Polassio	97.5 ppm= Λlto				
Cátcio + Magnesio	11.50 me•/ <u>.</u> ∆lto	-			
Aluminio	0.05 me./• pH 6.0	_ toneladas de calcario/Ha de preieren- cia dolonítico 30 a 60 días antes do plantio			
Textura Teor de M	Franco argilo arenoso latena Organica 1 66 %.	Responsavet Tecnico	Marca do Remetente	Numero de Laboraturio	Data da Analise
Cultura a	ser feita	Mar	P-16 -	F-1028	05-0 4-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R 11 1 .

RECURJOS ANALISES E INVESTIGAÇÃO DE SOLOS ETDA

Avenida da Universidado 1989 - Fones 226 0118 e 231 0427

Benfica Cep 60 000 Fortaliza Ceará

INTERESSADO ACUASOLOS-CONSULTOPIA DE ENCENHARIA LADA .

PROCEDENCIA VALLE INDS CARAS . CARERI .

Resultados da Analice do Colo	SUGESTÕES PARA ADUBAÇÃO E CALAGEM			LAGEM
Fusioro 1.80 ppm= Δlto				
Polassio 202.0 ppm - Alto				
Calcio E Magnesio 28.00 me*/_ Al to				
Aluminio 0.00 me./*	_ toneladas de calcario/Ha de preieren- cia dolamítico 30 a 60 días antes do plantio			
Textura - Franco argilo archoso Teor de Matena Organica 1.81	Responsavel Lecnico	Marca do Remetente	Numero de Laboratorio	Data da Analise
Cultura a ser feita	de	P-17	F-1031	05-04-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 \$.

RECURSOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidade 1989 Fones 226 0118 e 231 0427

Bonfica Cep 60 000 Fortaliza Ceará

INTERESSADO ACHASOLOS-CONSTITORIA DE ENCENHARIA LTDA .

PROCEDÊNCIA VALL IXOS CARAS-CARIRI

Resultados da Analice do Solo	SUGESIÕES PARA ADUBAÇÃO E CALAGEM			
Fosforo 8.2 ppm= Baixo				
Potassio 351.0 ppm= Λ1to				
Calcio † Magnesio 54.00 me*/_ Alto				
Aluminio 0.0 me./• pH 8.0	toneladas de calcario/Ha de preferen			
Textura - Argila Teor de Materia Organica 0.81 */.	Re ponsavel Marca do Numero de Data o lecnico Remetente Laboratório Analisa			
Cultura a scr feita	P-18 / T-1035 05-04-8			

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R 8 1 \$.

RECURSOS ANALISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidado 1989 Fones 226 0118 e 231 0427 Benfica Cep 60 000 Fortaliza Ceará

INTERESSADO ACUASOLOS-CONSULTORIA DE ENCENHARIA LITA .

PROCEDENCIA VALE DOS CARAS-CARIRI .

Resultados da Anali e do Sido	SUGESTÓES PARA ADUBAÇÃO E CALAGEM			
Fostoro 7.9 pprn- Balxo				
Potassio 132.0 ppm= Alto				
Calcio Magnesio 60.20 me*/ _o = Al to				
Aluminio 0.00 me /*	toneladas de calcario/Ha de preferen- cia doloπitico 30 a 60 dias antes do plantio			
Textura - Argila Teor de Materia Organica 1 50 */.	Responsavel Marca do Numero de Data da 1ecnico Remetente Laboratorio Analise			
Cultura a ser feita	Р-19 - Г-1038 05-4-86			

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 \$.

RECURSOS ANÁLISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidado 1989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Fortaliza Ceurá

INTERESSADO AGUASOLOS-CONSULTOPIA DE ENGENHARIA LTDA

PROCEDENCIA VALL TOS CARAS-CARTRI .

Resultados da Analise do Solo	nalise do Solo SUGESTÕES PARA ADUBAÇÃO E CALAGE			ALAGEM
Lostoro 7.5 ppm= Baixo				
Polassio 170.0 ppni Alto				
Calcio J- Magnesio 49.00 me*/,= Alco				
Aluminio 0,00 me./- jill 7.2	toneladas de calcario/Ha de preieren- сы dolamitico 30 a 60 dias antes do plantio.			
Textura - Argila Teor de Matena Organica 1.63 */.	Responsavel Lectrico	Marca do Remetente	Numero de Laboratorio	Data da Anali₊e
Cultura a ser feita	ppe	P-20 /	F-1041	05-04-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R # 1 \$.

RECURSOS ANALISES E INVESTIGAÇÃO DE SOLOS LEDA

Avenida da Universidade 1989 Fones 226 0118 e 231 0427 Bonfica Cep 60 000 Fortaleza Ceatá

INTERESSADO ACUASOLOS-CONSULTORIA DE L'INCLINIARIA LTDA .

PROCEDENCIA VALE DOS CARAS-CARIRI .

Resultados da Analico do Solo	SUCESIÕES PARA ADUBAÇÃO E CALAGEM			
Fosforo 3.2 ppm= Bilixo				
Potassio 95.8 ppin- Alto	-			
Calcio + Magnesio 1.80 me /- Brixo				
Aluminio 0.12 me./-	toneladas de calcario/Ha de preieren-			
Textura - Arenosa Teor de Materia Organica 0.54 */.	Responsavel Tecnico	Marca do Remetente	Numero de Laboratorio	Data da Analise
Cultura a ser feita	MIN	P- 21	F-1043	05-04-86

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R . . .

RECURSOS ANÁLISES E INVESTIGAÇÃO DE SOLOS LTDA

Avenida da Universidade 1989 Fones 226 0118 e 231 0427

Benfica Cep 60 000 Fortifica Ceará

INTERESSADO AGUASOLOS-CONSULTORIA DE ENGLNILARIA LTDA .

PROCEDÊNCIA VALF IXIS CARAS-CARERE

Resultados da Analise do Solo	SUGESTÕES PARA ADUBAÇÃO E CALAGEM			
Fosforo 3.7 ppm Barxo				
Potassio 43.0 ppm= Balxo				
Calcio + Magnesio 1.70 me*/_=Balxo				
Aluminio 0.06 me./• pH 6.0	toneladas de calcario/Ha, de preferen- cia dolonilico 30 a 60 días antes do plantio			
Textura - Areia franca Teor de Materia Organica 0.56 -/.	Responsável Lecnico	Marca do Remetente	Numero de Laboratorio	Data da Analise
Cultura a ser feita	MILL	F-22	F-1046	05-04-8

ORIENTE A ADUBAÇÃO RACIONAL DE SUA CULTURA OUVINDO A SUGESTÃO DA R R 1 S.

6.2 - Capacidade de Uso da Terra

O estudo da Capacidade de Uso da Terra obedeceu a sistemática recomendada pelo Escritório Técnico de Agricultura Brasil-Estados Unidos em seu Manual Brasileiro para Leventamento da Capacidade de Uso da Terra IIIª Aproximação.

Como há possibilidade para aplicação de irrigação na área do projeto, fizemos uso, em nosso estudo, do emprego das fórmulas de Capacidade de Uso não só a nível de propriedade agrícola, como também, para planos de irrigação e drenagem. Foram julgados áptos para irrigação os solos classificados nas classes de capacida de I, II e III sem limitações sérias e a classe IV com limitações severas e dispendiosas.

Neste trabalho identificamos, na área do estudo, as se - guintes classes de Capacidade de Uso da Terra, sobre as quais nos reportamos a seguir:

- Classe I Terras cultiváveis permanente e seguramente com produ ções de colheitas entre médias e elevadas, das culturas
 anuais, adaptadas, sem práticas ou medidas especiais.
 São terras boas sob todos os pontos de vista.
 O solo é profundo e fácil de trabalhar. Conserva bem a
 água e é pelo menos mediamente suprido de elementos nutritivos para as plantas. Podem ser cultivadas sem práticas especiais de controle de erosão. A declividade é
 suave.
- Classe II Terras que requerem uma ou mais práticas especiais fácil execução, a fim de poderem ser cultivadas e permanentemente com a produção de colheitas entre médias e elevadas das culturas anuais adaptadas. São terras boas sob todos os pontos de vista, com excessão de certas condições físicas em razão dos quais não são tão boas como as da classe I. A declividade pode ser suficiente para fazer correr as enxurradas е provocar erosão. Uma vez que as terras da classe ΙI apresentam alguma moderada limitação em sua capacidade natural de uso, alguns tratamentos especiais são requeridos tais como práticas conservacionistas facilmente executáveis. 000181

No caso da área de estudo e simples distinção do solo para exploração com fruticultura ou culturas cubram toda a superfície do solo (cana, capins, etc) é suficiente para evitar-se os problemas da erosão possíveis de ocorrer.

- Classe III Terras que requerem medidas intensivas ou comple xas a fim de poderem ser cultivadas, segura e permanentemente com a produção de colheitas entre médias e elevadas, das culturas anuais adaptadas.

 São terras moderadamente boas para cultivos. Apresentam maiores limitações ao uso que a da classe
 II devido a um ou mais aspectos naturais. Podem
 ser usadas regularmente para culturas anuais.

 Por causa de suas restrições naturais, requerem '
 tratamento intensivo de alguma espécie. As terras
 classificadas mesta classe, o foram por razões rela
 tivas a textura (arenosa ou argilosa) e ou a pre sença de sais e drenagem.
- Classe IV Terras que não se prestam para cultivos contínuos ou regulares, com a produção de colheitas médias a elevadas das culturas anuais adaptadas, mas que se tornam apropriadas para cultivos de tais culturas, em período curtos, quando adequadamente protegidas das.

As terras da Classe IV podem ser caracterizadas pelos seguintes aspectos: declives ingremes erosão severa, obstáculos físicos, etc. No caso da área do projeto, as determinantes foram a drenagem imperfeita e os elevados níveis de alcalinidade e salinidade.

Classe VIII - Terras impróprias para qualquer tipo de exploração.

No caso da área do projeto Carás, a causa determi
nante foi a elevada pedregosidade de uma pequena

parte da mesma.

\sim	\sim	٠.	A	•	
7)	· }	11	1).(
٠,	٠,	U	1	J	•

	2 011.0010 01 0	milozonod bu obo bii zamai		7,30130
Unidade de Solo	Fórmula de classes de uso para	Fórmula de classes de	Área	8
A _{el}	Propriedades Agrícolas IId <u>6-A+</u> Laa 1321-1-3 123-0 14	Uso p/irrigação e drenágem IId <u>6 - A+ - 3</u> 25 - 24514	(Ha) 91,12	5,46
Ae2	I <u>2 - A+</u> Laa 1321-1-3 113-014	$ \begin{array}{rrrr} 1 & 2 - A^{+} - 3 \\ \hline 14 - 22114 \end{array} $	21,15	1,27
Ae3	IIIs <u>5 - A+</u> Pn 1321-1-3 123-054	IIIs <u>5 - A+ - 3</u> 16 - 25454	128,25	7,68
Ae4	IVs <u>5 - A+</u> Pn 1321-1-3 123-094	IVs $\frac{5 - A^{+} - 3}{26 - 24594}$	34,00	2,04
Ae5	IVds <u>5 - A+</u> Pn 1321-1-3 123- 0 74	IVds $\frac{5 - A^{+} - 3}{26 - 24574}$	42,75	2,56
Ae6	IVs <u>5 - A+</u> Lan 1321-1-3 124-094	IVs <u>5 - A+ - 3</u> 25 - 24494	95,63	5,73
Ae7	IIId <u>5 - A+</u> Pxe 1321-1-3 122-014	IIId <u>5 - A+ - 3</u> 26 - 25514	38,75	2,32
Ae8	IVs <u>8 - A+</u> Pn 1321-1-3 123- 0 94	IVs 8 - A+ - 3 29 - 25594	46,75	2,80
Ae9	IVs <u>5 - A+</u> Pn 1321-1-3 123-094	IVs <u>5 - A+ - 3</u> 29 - 25494	36,25	2,17
Ae10	IVs <u>5 - A+</u> Lar 1321-1-3 124-094	IVs <u>5 - A⁺ - 3</u> 26 - 25494	141,50	8,48
Aell	IIId <u>8 - A+</u> Laa 1321-1-3 122- 0 14	IIId <u>8 - A+ - 3</u> 29 - 25414	15,21	0,91
Ae12	IIId <u>8 - A+</u> Pn 1321-1-3 122-014	IIId <u>8 - A+ - 3</u> 29 - 25514	68,75	4,12

Unidađe đe	Fórmu	la de classes de uso para	Fórmul	Fórmulas de classes de uso		8
Solo	Propr	ıedades Agrícolas	p/irri	p/irrigação e drenagem		
Ae13	IVs	8 - A+ Lan 1321-1-3 123-094	IVs	8 - A ⁺ - 3 29 - 25594	60,00	3,59
Ae14	IVs	8 - A+ Pn 1321-1-3 123-074	IVs	$\frac{8 - A^{+} - 3}{29 - 25574}$	77,00	4,61
Ae15	IVs	8 - A+ Pn 1321-1-3 122-094	IVs	8 - A ⁺ - 3 29 - 25494	138,75	8,31
PE	IIf	2 - B+ Pn 1321-1-3 123-015	IIf	$\frac{2 - B^{+} - 3}{22 - 22115}$	88,20	5,28
v ₁	III	8 - B+ Laa 1321-1-3 122-115	III	8 - B ⁺ - 3 29 - 24115	47,50	2,85
V ₂	III	8 - B+ Laa 1321-1-3 122-114	III	8 - B ⁺ - 3 29 - 25115	302,25	18,11
AQdą	IIIf	<u>1 - B-</u> Hf 1321-1-3 124- 0 15	IIIf	$\frac{1 - B^{-} - 3}{21 - 23115}$	132,85	7,96
AQd2	IIIf	<u>1 - B-</u> Hf 1321-1-3 114- 0 15	IIIf	<u>1 - B⁻ - 3</u> 11 - 21115	45,50	2,73
Area coberta com pedras	VIIIp		VIIIp		17,12	1,02
				TOTAIS	1.669,19	100,00

QUADRO DE CAPACIDADE DE USO PARA FINS DE LEVANTAMENTOS DE PROPRIEDADES AGRÍCOLAS

CLASSES	ÁREA (Ha)	PERCENTUAIS
I	21,15	1,27
11d	91,12	5,46
IIf	88,20	5,28
III	349,75	20,96
IIId	122,62	7,35
IIIs	128,25	7,68
IIIf	178,35	10,69
IVs	629,88	37,73
IVds	42,75	2,56
VIII	17,12	1,02
TOTAIS	1.669,19	100,00

QUADRO DE CAPACIDADE DE USO PARA FINS DE PROPRIEDADE AGRÍCOLA (CONCENTRADO)

CLASSES	ÁREA	PERCENTUAIS
I	21,15	1,27
II	179,32	10,74
III	778,97	46,68
IV	672,63	40,29
VIII	17,12	1,02
TOTAIS	1.669,19	100,00

6.3 - Recomendações de Adubações

RECOMENDAÇÕES DE ADUBAÇÕES

UNIDADES: Ae 1, Ae 2, Ae 4, Ae 6, Ae 8, Ae 10 e Ae 15.

ALGODÃO

N P K N (Cobertura)
20 60 60 20

la. Opção

Urēia 50 kg/ha

οu

Sulfato de amônia - 100 kg/ha

οu

Super-triplo - 147 kg/ha

ou

Super-simples - 300 kg/ha

Sulfato de potássio - 125 kg/ha

Aplicar em cobertura 50 kg de uréia ou 100 kg de sulfato de amônia 35 a 50 dias após o plantio.

2a. Opção

Fosfato diamônio - 130 kg/ha

Sulfato de potássio - 125 kg/ha

Aplicar em cobertura 35 a 50 dias após o plantio 100kg de sulfato de amônio.

CAPIM

N P K N (Cobertura)

20 40 40 20

la. Opção

Sulfato de amônio - 100 kg/ha

Super-simples - 200 kg/ha

o u

Super-triplo - 100 kg/ha

Sulfato de potassio - 100 kg/ha

Aplicar em cobertura 100 kg de sulfato de amônio a lanço 40 dias após o plantio.

2a. Opção

Fosfato diamônio - 100 kg/ha

Sulfato de potássio - 100 kg/ha

Aplicar a lanço 40 dias após o plantio 150 kg de sulfato de amônio.

MILHO E SORGO

N P K N (Cobertura)

20 40 40 20

la. Opção

Sulfato de amônio - 100 kg/ha

Super-simples - 200 kg/ha

οu

Super-triplo - 100 kg/ha

Sulfato de potássio - 100 kg/ha

Aplicar em cobertura 100 kg/ha de sulfato de amônio 35 a 40 dias após a germinação.

2a. Opção

Fosfato diamônio - 100 kg/ha

Sulfato de potássio - 100 kg/ha

Usar em cobertura 35 a 40 dias após a germinação 100 kg de sulfato de amônio.

CANA

N P K N (Cobertura)

90 90 120 40

la. Opção

Sulfato de amônio - 450 kg/ha

Superfosfato simples - 450 kg/ha

οu

Superfosfato triplo - 200 kg/ha

Sulfato de potássio - 200 kg/ha

Aplicar em cobertura 4 meses após o plantio 200 kg/ha de sulfato de amônio.

2a. Opção

Fosfato diamônio - 200 kg/ha

Sulfato de potássio - 200 kg/ha

Usar em cobertura 4 meses apos o plantio 150 kg/ha de sulfato de amônio.

40

ARROZ

N P K N (Cobertura)

20 40 40

la. Opção

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 200 kg/ha

οu

Superfosfato triplo - 100 kg/ha

Sulfato de potássio - 100 kg/ha

Usar 100 kg/ha de sulfato de potássio a lanço 35 dias após o plantio e mais 100 kg/ha do mesmo fertilizante após 70 dias de plantio.

2a. Opção

Fosfato diamônio - 100 kg/ha

Sulfato de potássio - 100 kg/ha

Usar em cobertura 35 dias após o plantio 130 kg/ha de sulfato de potássio e 70 dias também após o plantio mais 100 kg/ha de sulfato de amônio.

RECOMENDAÇÕES DE ADUBAÇÕES

UNIDADE: Ae 7

ALGODÃO

N P K N (Cobertura)

20 60 60

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 300 kg/ha

Sulfato de potássio - 125 kg/ha

Aplicar em cobertura 100 kg/ha de sulfato de amônio 35 a 50 dias após o plantio.

CAPIM

N P K N (Cobertura)

20 40 40 20

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 200 kg/ha

Sulfato de potássio - 100 kg/ha

Aplicar em cobertura, a lanço, 40 dias após o plantio, 100 kg/ha de sulfato de amônio.

MILHO E SORGO

N P K N (Cobertura)

20 40 40 20

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 200 kg/ha

Sulfato de potassio - 100 kg/ha

Usar em cobertura 35 a 40 dias após a germinação, 100 kg/ha de sulfato de amônio.

CANA

N P K N (Cobertura) 90 90 120 40

Sulfato de amônio - 450 kg/ha

Superfosfato simples - 450 kg/ha

Sulfato de potassio - 200 kg/ha

Aplicar em cobertura 4 meses apos o plantio 200 kg/ha de sulfato de amônio.

ARROZ

N P K N (Cobertura) 20 40 40 40

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 200 kg/ha

Superfosfato de potassio-100 kg/ha

Usar 100 kg/ha de sulfato de potássio, a lanço, 35 dias após o plantio. Repetir a dose aos 70 dias do plantio.

RECOMENDAÇÕES DE ADUBAÇÕES

UNIDADES: A_{e5} , A_{e9} , A_{e11} , A_{e12} , A_{e13} , A_{e14} , V_1 e V_2

ALGODÃO

N P K N (Cobertura)
20 60 30 20

la. Opção

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 300 kg/ha

ou

Superfosfato triplo - 147 kg/ha

Sulfato de potassio - 70 kg/ha

Aplicar em cobertura 35 a 50 dias após o plantio 100 kg/ha de sulfato de amônio.

2a. Opção

Fosfato diamônio - 130 kg/ha

Sulfato de potássio - 70 kg/ha

Aplicar em cobertura 35 a 50 dias após o plantio 130 kg/ha de sulfato de amônio.

CAPIM

N P K N (Cobertura)
20 60 30 20

la. Opção

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 300 kg/ha

Sulfato de potássio - 70 kg/ha

Aplicar em cobertura 100 kg/ha de sulfato de amônio, a lanço 40 dias após o plantio.

2a. Opção

Fosfato diamônio - 130 kg/ha

Sulfato de potássio - 70 kg/ha

Usar em cobertura, 40 dias após o plantio, 100 kg/ha de sulfato de amônio por hectare.

MILHO E SORGO

N P K N (Cobertura)
20 40 20 20

la. Opção

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 200 kg/ha

ou

Superfosfato triplo - 100 kg/ha

Sulfato de potássio - 50 kg/ha

Aplicar 100 kg/ha de sulfato de amônio 35 a 50 dias apos a germinação.

2a. Opção

Fosfato diamônio - 100 kg/ha

Sulfato de potássio - 50 kg/ha

Aplicar em cobertura 100 kg/ha de sulfato de amônio 35 a 50 dias após a germinação.

CANA

N P K N (Cobertura) 40 90 60 30

la. Opção

Sulfato de amônio - 200 kg/ha

Superfosfato simples - 450 kg/ha

ou

Superfosfato triplo - 200 kg/ha

Sulfato de potássio - 125 kg/ha

Usar em cobertura 150 kg/ha de sulfato de amônio 4 meses após o plantio.

2a. Opção

Fosfato diamônio - 200 kg/ha

Sulfato de potassio - 65 kg/ha

Usar em cobertura 150 kg/ha de sulfato de amônio, 4 meses após o plantio.

ARROZ

N P K N (Cobertura) 40 40 20 20

la. Opção

Sulfato de amônio - 200 kg/ha

Superfosfato simples - 200 kg/ha

οu

Superfosfato triplo - 100 kg/ha

Sulfato de potássio - 50 kg/ha

Usar 50 kg/ha de sulfato de amônio, a lanço, 35 dias após o plantio. Repetir a dose 70 dias após o plantio.

2a. Opção

Fosfato diamônio - 100 kg/ha

Sulfato de potássio - 50 kg/HA

Usar 75 kg/ha em cobertura e a lanço 35 dias após o plantio. Repetir a dose aos 70 dias depois do plantio.

RECOMENDAÇÕES DE ADUBAÇÕES

UNIDADE: Ae 3

ALGODÃO

N P K N (Cobertura)

20 30 30 20

la. Opção

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 150 kg/ha

οu

Superfosfato triplo - 67 kg/ha

Sulfato de potássio - 63 kg/ha

Aplicar em cobertura, 35 e 50 dias após o plantio 100 kg/ha de sulfato de amônio.

2a. Opção

Fosfato diamônio - 65 kg/ha

Sulfato de amônio - 60 kg/ha

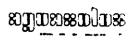
Sulfato de potássio - 63 kg/ha

Aplicar em cobertura, 35 a 50 dias apos o plantio, 100 kg/ha de sulfato de amônio.

CAPIM

N P K N (Cobertura)

20 30 30 20


la. Opção

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 150 kg/ha

ou

Superfosfato triplo - 65 kg/ha

Sulfato de potássio - 63 kg/ha

Usar em cobertura 100 kg/ha de sulfato de amônio, a lanço, 40 dias após o plantio.

2a. Opção

Fosfato diamônio - 65 kg/ha

Sulfato de amônio - 60 kg/ha

Sulfato de potássio - 63 kg/ha

Usar em cobertura e a lanço 100 kg/ha de sulfato de amônio, 40 dias após o plantio.

MILHO E SORGO

N P K N (Cobertura)
20 20 20 20

la. Opção

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 100 kg/ha

ou

Superfosfato triplo - 50 kg/ha

Sulfato de potássio - 50 kg/ha

Usar em cobertura 35 a 40 dias apos a germinação 100 kg/ha de sulfato de amônio.

2a. Opção

Fosfato diamônio - 44 kg/ha

Sulfato de amônio - 75 kg/ha

Sulfato de potassio - 50 kg/ha

Usar em cobertura 35 a 40 dias após a germinação, 100 kg/ha de sulfato de amônio.

CANA

N P K N (Cobertura) 40 45 60 30

la. Opção

Sulfato de amônio - 200 kg/ha

Superfosfato simples - 225 kg/ha

οu

Superfosfato triplo - 100 kg/ha

Sulfato de potássio - 125 kg/ha

Aplicar em cobertura 4 meses apos o plantio 150 kg/ha de sulfato de amônio.

2a. Opção

Fosfato diamônio - 100 kg/ha

Sulfato de amônio - 190 kg/ha

Sulfato de potássio - 125 kg/ha

Usar 4 meses apos o plantio, em cobertura, 150 kg/ha de sulfato de amônio.

ARROZ

la. Opção

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 100 kg/ha

οu

Superfosfato triplo - 50 kg/ha

Sulfato de potássio - 50 kg/ha

Usar em cobertura 50 kg/ha de sulfato de amônio 35 dias após o plantio. Repetir a dose aos 70 dias também após o plantio.

2a. Opção

Fosfato diamônio - 44 kg/ha

Sulfato de amônio - 75 kg/ha

Sulfato de potássio - 50 kg/ha

Usar em cobertura aos 35 e aos 70 dias após o plantio, 50 kg de sulfato de amônio por hectare.

RECOMENDAÇÕES DE ADUBAÇÕES

UNIDADES: A Qd 1 e AQd 2

LARANJA

N P K N (Cobertura) 100 120 200 100

Superfosfato simples - 600 kg/ha

ou

Fosfato diamônio - 260 kg/ha

Sulfato de amônio - 350 kg/ha

Sulfato de potássio - 417 kg/ha

Fazer calagem com 1.000 kg/ha de calcario dolomítico antes 30 a 40 dias do plantio.

Usar esterco a vontade.

BANANA

N P K N (Cobertura)
40 80 100 20

Sulfato de amônia - 200 kg/ha

Superfosfato simples - 400 kg/ha

Sulfato de potássio - 210 kg/ha

Fazer calagem com calcario dolomítico na base de 1.000 kg/ha 30 a 40 dias antes do plantio.

Usar esterco a vontade nas covas.

TOMATE

N P K N (Cobertura)

80 120 160 40

Sulfato de amônio - 400 kg/ha

Superfosfato simples - 600 kg/ha

Sulfato de potássio - 335 kg/ha

Fazer calagem 30 a 40 dias antes do plantio, na base de 1.000 kg/ha.

Usar 2 kg de esterco de gado por cova.

Aplicar em cobertura 30 dias apos o transplante 200 kg/ha. Repetir a dose 15 dias apos a la. cobertura.

CANA

N P K N (Cobertura)

40 90 120

Sulfato de amônio - 200 kg/ha

Superfosfato simples - 450 kg/ha

Sulfato de potássio - 250 kg/ha

Fazer calagem na base de 1.000 kg/ha 30 a 40 dias antes do plantio.

Aplicar em cobertura 150 kg/ha de sulfato de amônio, 4 meses após o plantio.

FEIJÃO

N P K N

20 40 40

Sulfato de amônio - 100 kg/ha

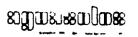
Superfosfato simples - 200 kg/ha

Sulfato de potássio - 100 kg/ha

Fazer calagem 30 a 40 dias antes do plantio, na base de 1.000 kg/ha de calcário dolomítico.

CAPIM

N P K N (Cobertura) 20 60 60 20


Sulfato de amônio - 100 kg/ha

Superfosfato simples - 200 kg/ha

Sulfato de potassio - 125 kg/ha

Fazer calagem na base de 1.000 kg/ha de calcário dolomítico, 30 a 40 dias antes do plantio.

Pode-se usar esterco de gado a lanço.

RECOMENDAÇÕES DE ADUBAÇÕES

UNIDADES: Pe

CANA

N P K N (Cobertura)

40 90 60 30

Sulfato de amônio - 200 kg/ha

Superfosfato simples - 450 kg/ha

Sulfato de potássio - 125 kg/ha

Usar em cobertura 4 meses após o plantio, 150 kg/ha de sulfato de amônio.

Fazer calagem na base de 1.500 kg/ha de calcario dolomítico.

CAPIM

N P K N (Cobertura)

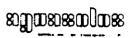

20 60 30 20

Sulfato de amônio - 100 kg/ha

Superfosfato simples - 300 kg/ha

Sulfato de potássio - 70 kg/ha

Usar em cobertura, a lanço, 100 kg/ha de sulfato de amônio, 40 dias após o plantio.


7 - CLASSES DE TERRAS PARA IRRIGAÇÃO

Para o cumprimento deste item do relatório, utilizou-se a sistemática empregada pelo Bureau of Reclamation dos Estados Unidos da América do Norte. Esta classificação embora
não se ajuste perfeitamente às nossas condições é praticamente
a única posta em uso em todo o país e na maioria do mundo.

A descrição das classes de terras para irrigação só levará em consideração, no que diz respeito as limitações, apenas os fatores que compõem o numerador das formulas que irão caracterizar cada uma das classes identificadas e mapeadas. Por tanto, na descrição das restrições ao uso do solo para fins de irrigação, só teceremos comentários sobre os aspectos solo, to pografia e drenagem.

Estribados nesta linha de raciocínio e conduta identificamos e passamos a comentar as seguintes classes de terras para irrigação:

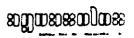
CLASSE 2 - Terras com moderada adequabilidade agricultura irrigada, sendo a capacidade de produção mais baixa que a da classe 1. Em comparação com esta, a classe 2 é ada ptavel para um menor número de culturas e os custos para cultivo e para o preparo de irrigação são maiores. Esta classe apresentou as subdivisões 2s, 2sd e 2sdt. Conduzem os solos classe 2s, problemas relativamente simples, decorrentes basica mente da textura leve, quais sejam: baixa fertilidade, pequena capacidade de troca de cátions, pequena capacidade de retenção de umidade e elevada permeabilidade. Para a sub-classe 2sd, os solos são levados devido algumas das limitações de sub- classe 2s como: textura tendente a arenosa e fertilidade. Hã como agravantes a drenagem imperfeito e os riscos de inundações sazonais. Para a sub-classe 2sdt foram considerados condicionantes além da fertilidade carente, a acidez e gem imperfeita, uma pequena pedregosidade aliada à declividade que ja limita mecanização agrícola de certa forma.

CLASSE 3 - Terras que são adequadas ao desenvolvimento de irrigação, porém são de restrita adequabilidade as deficiências que possuem em solo, e/ou drenagem e/ou topo grafia, as quais são maiores do que aquelas citadas para terras de classe 2. Esta classe apresenta as seguintes sub-divisões: 3s, 3d, 3sd e 3sdt. Os solos aportaram na sub-classe 3s devido principalmente a textura arenosa que em decorrência apresenta baixa fertilidade e elevada permeabilidade. As limitações responsáveis pelo surgimento da sub-classe 3d foram a ma drenagem e os riscos de inundações. Na sub-classe 3sd correrão os fatores limitantes: sais, alcalinidade, drenagem, bai xa permeabilidade, riscos de inundações, baixa fertilidade, ele vada permeabilidade, etc., que ocorreram quase sempre, de forma combinada, dois ou mais deles consecutivamente. Para a sub -classe 3sdt além de algumas limitações citadas na sub- classe 3sd acrescente-se as limitações de natureza topográfica.

CLASSE 4 - As terras incluidas nesta classe dependem de estudos especiais de engenharia e economia para a decisão de sua viabilidade. Elas podem ter uma excessiva deficiência ou deficiências susceptíveis de correção, a alto custo, porém são adequadas para a irrigação devido a existência de culturas intensivas ou especiais.

A magnitude das deficiências corrigíveis é suficiente para requerer despesas de capitais, para desenvolvimento da terra, maiores que aquelas permissíveis para a classe 3, porém, em quantidades justificáveis devido às utilidades específicas previstas. Nesta classe encontramos apenas a sub-classes 4sd.

Os solos chegaram a esta classificação devido principalmente as limitações referentes a textura pesada, salinidade e alcalinidade, drenagem impedida, riscos de inundação e baixa permeabilidade que ocorrem sempre associados.


Os solos da classe 2 oferecem condições de serem explorados com um número relativamente grande de culturas, apresentando limitações específicas de pouca importância e facil mente contornáveis pelo uso de práticos simples de manejo. São consideradas culturas adequadas para esta classe: as fruteiras, as hortaliças, o feijão, a cana, os capins, o algodão, o milho, o sorgo, etc.

Na classe 3 ficam as culturas mais resistentes a excessos temporários de água no solo e a presença de alguma alcalinidade e/ou salinidade. Quando os solos são arenosos e sem sais solúveis ou fixos à mícela de argila, deve-se evitar a recomendação da exploração da área com culturas muito exigentes em nutrientes minerais e que requeiram boa capacidade de retenção de umidade. Assim, estariam bem situadas nesta classe, o arroz, a cana, o algodão, o milho, o sorgo, o capim, as vezes a banana. Quando o solo se encontrar nesta classe devido a textura arenosa, sua aptidão se volta para a fruticultura, as hortaliças, a cana, os capins, o feijão, o melão, a melância, etc.

Na classe 4 - encontram-se as culturas adaptadas às condições impostas pelas texturas pesadas, a alcalinidade e sa linidade elevadas, a drenagem imperfeita a má e o risco de inundação anual e frequente. Assim; estas culturas seriam dependendo da situação específica de cada umidade de solo, a cana, os capins, o algodão e, principalmente o arroz.

203 7.1 - Quadro de Distribuição das Classes de Terras p/Irrigação

Classes e Sub-classe	Főrmulas	Āreas (ha)	Percentuais
2 s	2 s L2 2 B Y	21,25	1,27
2 s d	2sd L22BY f2	91,12	5,46
2sdt	2sdt 122BY	88,20	5,28
Totais - Clas se 2		200,57	12,01
3 s	3s v2	45,50	2,73
3 d	3d L22BZ f2	38,75	2,32
3 s d	3sd L22BY	128,25	7,68
3s d	3sd al L22BY	36,25	2,17
3 s d	3sd a2 L22BY	175,50	10,52
3sd	3sd v2	132,85	7,96
3 s d	3sd f2al L22BY	42,75	2,56
3sdt	3sdt g1x1	47,50	2,85
3sdt	3sdt g1h2 L22By	302,25	18,11
aís-Classe 3	a6020	949,60	56,90

		·	- (
Classes e Sub-classe	Fórmulas	Āreas (ha)	Percentuais
4 s d	4sd f2 L22BY	15,12	0,91
4 s d	4sd f2 L22BZ	68,75	4,12
4 s d	4sd a2 L22BZ	77,00	4,61
4 s đ	4sd a3	95,63	5,73
4sd	4sd f2a2 L22BZ	198,75	11,90
4 s d	4sd f2a2 L22BY	- 46,75	2,80
Totais-Classe 4		502,00	30,07
6	6sd x3	17,12	1,02
Total Geral		1.669,29	100,00
ł			000000

UNIDA- DE	ĀREA	% DA ÁREA	FATORES LIMITANTES	CLASSE DE TERRA P/ IRRIGAÇÃO	RECOMENDAÇÕES TÉCNICAS	APTIDÃO AGRÍCOL
^{Ae} 1	91,12	5,46	- Drenagem imperfeita - Risco de inundação - Fertilidade	2sd F2 L22BY	- Projeto de drenagem - Gradagem leves - Irrigação por aspersão - Adubações orgâno-minerais	- Cana - Capim - Fruticultura - Hortaliças - Algodão, milho, sorgo feijão.
Ае ₂	21,25	1,27	- Textura leve a partir de 44cm de profundidade - Baixa capacidade de troca de cátions após 44cm.	2s L22BY	- Adubações orgânica, visando me Ihorar a retenção de umidade do solo, a CTC.	- Fruteiras, culturas i dustriais, hortaliças
Ae ₃	128,25	7,68	- Salinidade - Alcalinidade - Drenagem	3sd L22BY	 Sístema de drenagem, visando melhorar a concentração de sais do solo. Emprego de adubos orgânicos e químicos, estes ricos em cálcio e de reação ácida. 	tração salina: algodão
Ae ₄	34,00	2,04	 Altas concentrações de sais e alcalís. Baixa permeabilidade Drenagem com ligeiros impedimentos. 	<u>3sd</u> a2 L22BY	 Construção de eficiente sistema de drenagem. Aplicação de corretivos (gesso) Uso de adubos orgânicos e/ou verdes. 	- Arroz e algodão

UNIDA-	ÁREA	7 DA	FATORES LIMITANTES	CLASSE DE TERRA P/	RECOMENDAÇÕES TÉCNICAS	APTIDÃO AGRÍC	COLA
DE	(ha)	ĀREA	TATORIO DI TITANTO	IRRIGAÇÃO			
Ae ₅	42,75	2,56	- Elevada alcalinidade - Ligeira tendência a salini- zação Drenagem imperfeita - Baixa permeabilidade - Risco de inundação	3sd f2al L22BY	 Subsolagens Adubações orgânica-minerais Irrigação gravitária (inundação) Implantação de drenagem subterrânea. Aplicação de carretivos quími cos. 	- Arroz	
Ae ₆	95,63	5,73	- Elevada alcalinidade - Elevada salinidade - Drenagem moderada - Baixa permeabilidade	4sd a3	- Sistema de drenagem - Aplicação de gesso - Lavagem do solo - Subsolagens - Irrigação por gravidade	- Arroz	
Ae ₇	38,75	2,32	- Textura média pesada, ten- dendo para pesada. - Má drenagem - Risco de inundação	3d L22BZ		- Arroz - Cana - Capim	
Aeg	46,75	2,80	- Textura pesada - Alta concentração de sódio solúvel - Salinidade - Drenagem	4sd f2a2	 Drenagem, de preferência subterrânea. Aplicação de gesso Uso de adubos orgânicos Lavagem do solo 	- Arroz - Cana - Algodão	aguaseolos 206

TIDA-	ĀRIA	% DA	FATORES LIMITANTES	CLASSE DE TERRA P/ IRRIGAÇÃO	RECOMENDAÇÕES TÉCNICAS	APTIDÃO AGRÍCOLA
	(ha)	ĀREA		TRRIGAÇÃO		
Aey	36,25	2,17	- Textura tendente a pesada em toda profundidade.	3sd a1 L22BY	- Drenagem - Aplicação de gesso e posterior	- Arroz
			- Alcalinidade		- lavagens de solo	- Cana
			- Salinidade		- Uso de fertilizantesricos em	
			- Baixa permeabilidade	•	cálcio e de reação ácida.	- Capim
			-		- Uso de adubos orgânicos	
Ae 10	141,50	8,48	- Excessiva alcalinidade	3sd a2	- Drenagem	- Nas condições em que o
10			- Salinidade	L22BY	- Gessagem	solo se encontra, suge-
			- Drenagem moderada		- Lavagem do solo	re-se o plantio de arro
			- Fertilidade, devido as al-		- Adubos orgânicos-minerais,sendo	
			tas concentrações de saís		estes últimos riscos em cálcio.	
			salūveis.			
Ae 11	15,12	0,91	- Textura pesada	4sd f2	- Sistema de drenagem superficial	- Arroz
11	•		- Baixa permeabilidade	L22BY	- Uso de adubos orgânicos ou ver-	
			- Drenagem moderada		des	- Cana
Ī			- Risco de inundação		- Subsolagens profundas	- Capim e algodão
Ae ₁₂	68,75	4,12	- Textura pesada	<u>4sd</u> f2	- Regularização do dreno natural	
12			- Baixa permeabilidade	L22BZ	que corta a área.	- Arroz
			- Risco de inundação		- Uso de adubos orgânicos	 - Cana
			•		- Subsolagens	1
						- Capim 2
						20

UNIDA-	ĀREA	Z DA	FATORES LIMITANTES	CLASSE DE TERRA P/	RECOMENDAÇÕES TÉCNICAS	APTIDÃO AGRÍCOLA
DE	(ha)	ĀREA	TATORIS BEITTANTES	IRRIGAÇÃO		
Ae _{i3}	60,00	3,59	- Elevada alcalinidade - Salinidade - Textura pesada - Drenagem impedida - Risco de inundação	4sd f2a2 L22BZ	- Drenagem subterrânea - Emprego de corretivo químico - Lavagem do solo - Uso de adubação orgânica - Subsolagens - Irrigação por gravidade	- Arroz - Se melhorada as condi ções químicas e físi- cas do solo, outras culturas poderão ser implantadas.
Ae ₁ 4	77,00	4,61	 Textura argilosa Alta concentração de sódio no complexo sortivo. Salinidade Drenagem imperfeita 	4sd a2 L22BZ	- Dotar a área de drenagem subte <u>r</u> rânea. - Gessagens e lavagem do solo - Uso de adubos orgânicos - Irrigação por método gravitávio	- Principalmente arroz - Cana e capim como se gunda opção.
¹ e ₁₅	138,75	8,31	- Elevadas concentrações de saís e álcalis - Textura pesada - Imperfeitamente drenado	4sd L22BZ	 Drenagem subterrânea Aplicação de gesso e lavagem do solo Uso de adubos orgânicos Uso de adubos químicos de rea ção ácida. Irrigação por gravidade. 	- Arroz
						208

UNIDA- DE	ĀREA	Z DA ĀREA	FATORES LIMITANTES	CLASSE DE TERRA P/ IRRIGAÇÃO	RECOMENDAÇÕES TÉCNICAS	APTIDÃO AGRÍCOLA
PE ₁	88,20	5,28	- Drenagem imperfeita - Baixa fertilidade - Acidez - Presença de algumas pedras na superfície do solo.	2sdt L22BY	- Correção do pH através de cala- gem e adubações orgâno-minerais - Evitar uso de mecanização agrí- cola - Irrigação por aspersão ou simi- lar.	- Cana, capim, milho,
v ₁	47,50	2,85	- Baixa permeabilidade - Alguma pedregosidade - Topografia	3sdt g1x1 L22BY		- Banana, citrus, milho sorgo, algodão e ar- roz.
v ₂	302,25	18,11	- Textura argilosa - Baixa permeabilidade - Drenagem imperfeita	3sdt g1h2 L22BY	- Melhorar as condições morfológi cas e físicas do solo. - Subsolagens	- Algodão, milho, sorgo e arroz.
A Qd ₁	132,85	7,96	- Textura arenosa - Baixa fertilidade - Elevada permeabilidade	3sd v2 L22BX	- Evitar-se a elevação do lençol freatico Calagem do solo - Adubos orgânicos - Irrigação por aspersão.	- Fruticultura - Hortaliças - Cana, feijão
						300 - 209 - 300 -

UNIDA- DE	ĀREA (ha)	7 DA ĀREA	FATORES LIMITANTES	CLASSE DE TERRA P/ IRRIGAÇÃO	RECOMENDAÇÕES TÉCNICAS	APTIDÃO AGRÍCOLA
A Qd ₂	45,50	2,73	- Textura arenosa - Baixa fertilidade - Pequena retenção de umida- de.	3s v2 L22BX	- Adubação orgânica, visando me- lhorar as características físico- químicas - Uso de calcáreo	- Fruteiras - Cana, capim, feijão, mandioca, melão.
Revesti- mento pedregoso	17,12	1,02	- Inapta para irrigação	6sd x3	_	
						agjuasanlus 210 33 3214

- 9 CONCLUSÕES E RECOMENDAÇÕES
- As características do solo e da topografia sugerem que sejam implantados na área mais de um sistema de irrigação.
- 2. Os solos aluviais na sua grande maioria exige tratamento contra salinidade e principalmente, alcalinidade.
- 3. Os solos citados acima, por apresentarem baixa permeabilidade devem receber adubação orgânica e mineral (esta última de reação ácida e rica em cálcio).
- 4. O adubo orgânico em qualquer dos solos da área é benéfico, sendo quase indispensável nas areias e podzólicos, a fim de melhorar as condições morfológicas (estruturação, porosidade, aeração, físicas (retenção de umidade e diminuição de permeabilidade) químicas (aumento de capacidade de troca de cátions e aumento da fertilidade em geral) e microbiológicas (aumento da população de microorganismo e aumento da sua alividade).
- 5. A aptidão principal dos solos, aluviais e vertisolos é para a cultura do arroz. As culturas de cana, aogodão e capins, também podem ser exploradas. Em algumas unidades menos pesadas e salinas, o milho e o sorgo podem se dar bem.
- 6. Para os podzólicos e as areias a aptidão e mais ampla comportando estes, fruticulturas em geral, hortaliças, cana, capins, melão, feijão, mandioca, amendoim, milho e sorgo.
- 7. Nas áreas de relevo suave ondulado a mecanização agrícola de ve der vista com cuidados e reservas.
- 8. A maioria das causas dos riscos de inundações provem de baixa permeabilidade do solo e não de transbordamentos do rio Carás.

- 9. Nas umidades de solos aluviais, pesados o método de irrigação gravitário se comporta melhor, especialmente de de planeja, ao lado de um bom sistema de drenagem, formas de adubações cujos componentes tendam a liberar, através de suas reações, o sódio retido nas micelas de argilas.
- 10. Nos vertisolos recomenda-se a irrigação por aspersão, canhão ou pivô central.
- 11. Para as areias e os podzólicos, os métodos de irrigação que não sejam por gravidade se adaptou melhor. Dependendo do tipo de cultura, da disponibidade de água, das condições to pográficas e da rentabilidade da exploração, pode-se decidir pelo melhor método de irrigação.
- 12. Em áreas salinas e/ou alcalinas ou ainda, de drenagem difícil e deve-se provê-las de sistemas de drenagem eficientes.
- 13. Para os solos arenosos e de alta permeabilidade, o parcelamento dos adubos minerais, principalmente à base de nitro genio, é indispensável.
- 14. Nos solos de textura leve, o preparo mecânico dos mesmos, pode ficar restrito apenas a simples gradagens.
- 15. A sistematização do solo só pode ser procedida nos aluviões e assim mesmo, deve-se atentar para a condição do solo, com vistas a não infertilizá-lo ou aproximar camadas indesejá veis de superfície.

10 - BIBLIOGRAFIA

- 1 Araújo, Mário Pestana (Tradução) Metodología da Classi ficação de Terras para Irrigação, adotada pelo Bureau of Reclamation USA - SUDENE - Recife.
- 2 Braga, R. Plantas do Nordeste, especialmente do Ceará,
 2a. Edição Fortaleza Imprensa Universitária do Ceará,
 1960 540 p.
- 3 Brasil, SUDENE DRN/HG. Normas Climatológicas da area da SUDENE Recife, 1963, 85 p.
- 4 Daker, A. Irrigação e Drenagem 3º volume, 3a. Edição, Rio de Janeiro, 453 p.
- 5 Galvão, M. V. Regiões Bioclimáticas do Brasil Revista Brasileira de Geografia, Rio de Janeiro, 29 (1) 3 36, 1967.
- 6 Jacomine, P.K.T. et alli, Levantamento Exploratório Reconhecimento de Solos de Estado da Paraíba. Rio de Janeiro. Equipe de Pedologia e Fertilidade do Solo E.P.F.S., 1972 683 p.
- 7 Jacomine, P.K.T. et allı, Levantamento Exploratório Reconhecimento de Solos do Estado do Rio Grande do Norte, Recife, Divisão de Pesquisas Pedológicas DDP, 1973, 502 p.
- 8 Munsell Color Campany, Inc. Baltimore, Munsell Soil Color Charts - Baltimore, 1954 - 35 p.
- 9 Sociedade Brasileira de Ciências do Solos. Comissão Permanente de Métodos de Trabalhos de Campo. Manual de Método de Trabalho de Campo, 2a. Aproximação. Rio de Janeiro. DPFS. 1967 33 p.
- 10 Soil Survey Staff, Soil Classification a Comprehensive System 7 th Aproximation. Washinton. U.S.D.A. 1960.

- 11 U.S.A Soil Survey Staff. Soil Survey Manual. Washington D.C. U.S.D.A. 1951 503 p. (Handbook 18).
- 12 U.S.A Supplement to soil Classification System (7 th Approximation). Washington. D.C. 1967.
- 13 Vetorri L. Métodos e Análise de Solo. Rio de Janeiro, E.P.F.S. 1969 24 p. (Boletim Técnico, 7).
- 14 Escritório Técnico Brasil Estados Unidos Manual Brasileiro para Levantamento da Capacidade de Uso da Terra III Aproximação. 19
- 15 Coelho, F. A. de P. et alli. Levantamento Detalhado dos Solos do Perímetro K de Morada Nova. Fortaleza, 1978.
- 16 Coelho, F.A. de P. Levantamento Detalhado dos Solos da Fazenda Ajuricaba. Massapê Ceará. 1984.
- 17 Coelho, F. A. de P. Levantamento Detalhado dos Solos da Região sob Influência da Barragem Poção da Ribeira. Itabaiana Se. 1984.